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Calabi-Yau metric on the Fermat surface.
Isometries and totally geodesic submanifolds

D.V. ALEKSEE « SKY, M.M. GRAEV

MGZPI, USSR, Moscow,
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Abstract. The hyper — Kahler Calabi-Yau metric m on the Fermat surface
F=(zd+zi+zd+zi=0ccP?

associated with the embedding F C € P* is studied. We prove that the lattice of
integer parallel 2 -forins on the Riemannian manifold (F, m) has the Gram matrix.
diag(4,8,8). We use it for calculation of the isometry group Isom(m). The action
of this group on the twistor space of parallel complex structure on ( F,m) is described
and the existence of 10 complex structures with non-trivial stabilizer in Isom(m) is
established. Then we give the classification of all connected 2 -dimensional totally
geodesic submanifolds which are fixed points sets of isometries. There are 288 such
manifolds of genus 0,1,2,3,5. They are complex curves respect to one of the 5 (up
to a sign) distinguished complex structures.

From the physical point of view such submanifolds are interpreted as (holo-
morphic) instantons for sigma model with the value in K3 surface. Such instan-
tons are studied by physicistis in relation with string theory.(*)

The generalization of the results to some class of Calabi-Yau metricson K3 sur-
faces X, associated with the embeddings X C CP is given.
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(*) See for example: Y. Kogan, D. Markushevich, A. Morozov, M. Olshanetsky, A. Perelomov,
A. Rosly, «Some examples of instantons in sigma models. K3 manifolds.» Preprint n. 32, 1988,
1-28.
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1. INTRODUCTION
The Fermat surface F is the complex surface in € P? defined by the equation

f=ag+azi+23+15=0,

where x,,...,x, are the homogeneous coordinates in € P3.

The Fermat surface is a K3 -surface, i.c. a simply-connected compact complex sur-
face with Chemn class ¢, = 0. Any K3-surface as a real manifold is diffeomorphic to
F [2]. '

By Yau theorem [10], any Kdhler metric x ona K3-surface X determines a Ricci-
flat Kéhler metric. It is defined as the unique Ricci-flat Kahler metric m whose Kihler
form is cohomologous to the Kihler form of the metric x. This metric m has two
properties: '

1)  m ishyper-Kihler, i.c. its holonomy group

Hol(m) = Sp(1) = SU(2);

2) m isanti-auto-dual,i.c. *R = —R, where R is the curvature 2 -forms of m
and * is the Hodge operator.

Note that for a Riemannian metric on a 4-manifold the properties 1) and 2) are
equivalente. By Hitchin theorem [10]. Ricci-flat metrics on K 3-surfaces exhaust all
non-flat hyper-Kihler metrics on compact 4 -manifolds.

Any holomorphic embedding X & C PV of K3-surface X defines Kihler metric
x on X induced by the Fubini-Study metric on € PV . The corresponding Ricci-flat
metric m on X iscalled Calabi-Yau metric associated with the embedding. In the paper
we study the Calabi-Yau metric m on the Fermat surface F associated with the tau-
tological embedding F C € P3. We shall call such metric standard. The Riemannian
manifold (F,m) will be called Fermat manifold. The explicit form of the metric m
is not known. Nevertheless, using some results from the geometry of K 3-surface, we
compute the group I(m) of isometries and determine all totally geodesic submanifolds
of the Fermat manifold which are fixed points sets of isometries.

In § 2 we establish some properties of the group I(m) of isometries of a hyper-
Kihler metric m ona 4 -manifold X. We study the action of I(m) onthe space E ~
R3? of parallel 2-forms on X and on the Grassmanian G,(E) ~ € P! = € U {oo}
of oriented 2 -subspace of E which identifies with the manifold of parallel complex
structure on X. We investigate the fixed points set Fix(g) of anisometry g € I(m).
Finally, we prove that iff m is the Calabi-Yau metric associated with a linear normal
embedding X C € PV thenthe group I(m,+J,) of isometries of m which preserve
the induced complex structure J, up to a signe is identified with the group Aut(X)
of (anti) holomorphic transformations of € PV preserving X. In §3 we determine
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the lattice I’ C E of integer parallel 2 -forms on the Fermat manifold ( F, m). It has
Gram matrix diag(4,8,8) with respect to some basis ¢y = m o Jy,€;,€,. Using this
result, we chlculate in § 4 the group I(m) of isometries explicitely:

I(m) = GU G, where 7 is the antiholomorphic involution of F ¢ € P3? de-
fined by the complex conjugation of the homogeneous coordinates in €CP* and G =
I(m,Jy) = 8, - (Z,)? is the group of J,-holomorphic transformations of F gen-
erated by permutations of the coordinates z,,...,z; in €P? and its multiplications
by v/1. The group I(m) has the order 2!° . 3 and acts in E as the full group of
orientation preserving automorphism of the lattice I', that is the dihedral group D,. In
the Grassmannian G, (E) = € U {oo} of parallel complex structure J,,t € € U {o0}
there are exactly 10 distinguished complex structures with non-trivial stabilizerin D, :

D J5,Jee=—Jdos

2) J,tt=1,J_,=-J,

3) J,tt=-1,7,=-J,.

As indicated above, they decompose into 3 orbits of the group D,. The complex
structure J,, is the natural structure of the complex surface F C € P3.

In § 5 we study and enumerate all projective lines on the Fermat surface F. There
are exactly 48 such lines. They are mutually non-homologous and generate 20 -dimen-
sional subspace in H,(F, €) dual to the space H'!(F, €). The lines are connected
components of the fixed point set of involutions h € I(m). Hence, they are totally
geodesic submanifolds of the Fermat manifolds ( F, m).

In § 6 we define some subgroup B =~ (Zz)5 of the group I(m) of isometries
of the Fermat manifold. It contains J,-antiholomorphic involution 7 and is gener-
ated by 6 antiholomorphic involutions pj;J =1,...,6. We describe the fixed points
set Fix(h) for h € B. In particular, we prove that C; = Fixp; (j = 1,...,6)
is topological sphere with 5 handles. Then we show that the subspace H,(F, €)2
of B-invariant elements from H,(F, C) is 1-dimensional. This implies the exis-
tence a unique (up to a signe) B-invariant parallel complex structure J. Since Cj( j=
1,...,6) isa B-invariant J-complex curve, the dual harmonic integer 2-form «; €
I' is B-invariant. Hence, it is proportional to m o J. Since

7 =Gy Cj= —x(C;) =8

and the only clements v € I" with y-y =8 are +¢,,+¢,, wecanindetify v, =, =
... = 7 with €. Then J is identified with the distinguished complex structure J;.
Hence J, is characterized as the unique (up to a signe) B-invariant parallel complex
structure.

In § 7 we classify all connected 2 -dimensional totally geodesic submanifolds C
in the Fermat manifold (F,m) which are connected components of fixed points sets
Fix(g), g € I(m).
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They are connected components of the fixed points set Fix(h) of involutions h €
I(m). There are 288 = 25 .32 such submanifolds with the Euler characteristic 2,0,
~2,-22 23 Thy are complex submanifolds with respect to one of the distinguished
complex structures. In particular, the J;-complex submanifolds C are either projective
lines (i.. 48 spheres) or spheres with 3 handles (28); the J,-complex submanifolds are
spheres (48), tori (12) or spheres with 5 handles (6); the Jx-complcx submanifolds
(x = (1+14)/v/2,x* = —1) are spheres (16) or spheres with 2 handles (24).

In § 8 we represent the Fermat surface F' with the complex structure J; by a
complete intersection of 3 diagonal quadratic in € P° and state that the Calabi-Yau
metric m' associated with the embedding F C € P° is isometric to v/2m, where m
is the standard Calabi-Yau metricon F. Inthis model the group B acts as the projective
group {diag(1,¢,,...,€),e = 1}.

To construct the embedding j : F — j(F) = K C CP> weprove that J,-complex
curves of genus 5 C; = Fix p; (j=1,...,6) arelinear equivalent and define the very
ample linear bundle L = [Cj] with HO(F,0(L)) ~ €°.The map J is defined as
themap F — P(H°(F,O(L))*) associated with the bundle L.

REMARK. 1) Many results of § 6 —8 remain true if one changes F by an B-invariant
quartic X C CP?, sec §6 — 8.

2)  The explicit construction of the Calabi-Yau metric m on F reduces to the
identification of two holomorphically non-equivalent K3-surface : F C C€P? and
K C CP?, thatis, to the explicit description of the diffeomorphism j : F — j(F) =
K C € P3. This diffeomorphism is I(m,J,)-equivariant and it is an isometry of the
Riemannian manifolds (F,m) and (K, m'/v?2).

3) The surface K isa Kummersurfacein @ P> associated with the Picard group
Pic,(C) of some curve of genus 2. More precisely, C is the 2 -fold covering of the
Riemannian sphere ramified in 6 vertices of the octahedron. The embedding K ¢ € P*
is constructed as in [3]. Ch. 6.

2. PROPERTIES OF ISOMETRIES OF A 4-DIMENSIONAL
HYPER-KAHLER MANIFOLD

Let m be a non-flat hyper-Kihler metric (i.¢. a Riemannian metric with the holon-
omy group Hol(m) = Sp(1)) on a compact 4-manifcld X. We denote by E ~ R3
the space of parallel 2-forms on (X, m) with the natural orientation and the Euclidean

metric
a-ﬂ=/ aAB.
X

The manifold of parallel complex structures on (X, m) isidentified with the Grassma-
nian G,( E) of oriented 2 -subspace in E : Parallel complex structure J defines the
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subspace (J)} C E withe the base Rew,Imw , where w#0 is a holomorphic 2 -form
on the complex manifold (X, J). In other words, (J} is the orthogonal complement
to the Kiihler form m o J in E. The manifold G,( E) is identified with the complex
quadric

Q={a€eP(CR®E)~CP,a-a=0}~ CP' = CU{x}.

A quantity t € € U {00} corresponds to the point a € Q, a = 2t,3(t2 + 1,82 —
1) and to the 2-subspace of E> with the base Re o, Im a. The associated complex
structure on X will be denoted by J,. We denote by T' the lattice of integer 2 -forms
in E. Let I(m) be the (finite) group of isometries of the metric m and I%(m) is the
kemel of its natural representation in E.

LEMMA 2.1. Let m be a hyper-Kihler metric on 4 -manifold X (It is not supposcd that
X is compact and simply connected).

(i) Anyisometry g € I(m) inducesin E a proper orthogonal transformation.
Hence, there is a fixed vector e# 0 for g. It is unique (up to a proportionality) if
g¢ I°(m) and it acts in the 2 -planc e as the rotation by an angle ¢ = p(g).

(ii) For g € I(m), there is a g-invariant parallel complex structure J¢ in X
defined by the condition (J9) = e'. It is unique (up to a signe) if g¢ I°(m).

(iii) Let = be a fixed point of g € I(m). Insuitable J . -holomorphic coordinates
, the differential dg Is given by diag(e™,e'"2), 0, + p, = p(g).-

(iv) Forv#0,veT,X, let I, be the group of isometries which preserve z € X
and v. Thenthe map v | : E — v! C T} X, defined by the internal multiplication by
v, is anisomorphism of I,-modules. In particular, I,NI°(m) = {id} andfor he I,,
the condition h™ € I°(m) implies h™ = id .

The proof of the lemma is straight forward. »

PROPOSITION 2.1. Let (X, m) be a hyper-Kéhler 4 -manifold.

1) Foranyisometry g € I°(m),g# id, the fixed point set Fix(g) is discrete.

2) Distinct involutions from I°(m) have not common fixed points.

3)  Suppose that each element from the quotient group I(m)/I°(m) has even
order. Then each 2 -dimensional component of the fixed point set Fix(g),g € I(m),
is contained into the fixed point set Fix(h) of the involution h = g* € I(m) — I°(m)
where 2k = orderg.

4)  For an involution h € I(m) — I°(m), the set Fix(h) is either empty or
has only 2 -dimensional components. For distinct involutions h,h' € I(m) the sets
Fix(h),Fix(h') have no common connected components.

5) Let hy,hy,hy € I(m) — I°(m) be distinct commuting involutions which
preserve the same parallel complex structure. Then

Fix(h,) NFix(h,) NFix(hs) = 0.
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Table 1.

d(h) 2 [ 3[47s
|Fix(h)| | 8 | 6 |4 | 4] 213

6) Suppose X is diffeomorphic to the K3-surface and id # h € I°(m). If the
order h=2,3 or4, then |Fix(h)| = 8,6 or 4 respectively.

REMARK. It can be proved that for any h € I°(m), the number |Fix(h)| < 8 and it
is defined by the order d(h) < 8 of h asitis indicates in the table 1:

Proof. The statements 1), 3) follows from iv) and 2), 4) follows from (ii), (iii). The
assertion 2) implies 5), since the action of the involutions Ay, h,, h; onthe space E is
identical and, hence, h,h,,hyhy € I°(m). Now we prove 6). Since h € I®(m) pre-
serves the complex structure J,, the Jg-holomorphic Lefschetz number [3] L(h,O)
is defined. For K3-surface, wehave H!® =0, H%® = H29 ~ € with the trivial ac-
tionof h. Hence L(h,0) = ¥ tr(h*|H®*) = 2. The holomorphic Lefschetz formula
and 1) imply that Fix(h) is finire and isn’t empty. Suppose that order d(h) = 2,3
or 4. Then, by lemma 2.1. (ii) the differential dh, of h at any h-invariant point z
is given by dh_ = diag(-1, —-1),diag(e23'i,e=§ﬂ) or, respectively, diag(i,—1). The
Lefschetz formula is read as:

1 N
4

1 _ NN N
det(id —dh;) 4’3 2~

2=L(h,0) = )

z€Fix( h)

This proves 6). ]

Now we assume that X is an algebraic K 3-surface with complex structure J,, and
m is the Calabi-Yau metricon X associated with a linear normal embedding

p:X — CPY = P(HY(X,0(L))*)
where L is a very ample line bundle [3].

PROPOSITION 2.2. The group I(m,+J,) of isometries of the Calabi-Yau metric m
which preserve the complex structure J, up o a signe is identified with the group
Aut(p(X)) of holomorphic and anti-holomorphic transformations of € PN which
preserve u(X) :

I(m, +J5) = Aut(p(X)) |, x)-
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Proof. Denote by n the Kihler form of the Fubini-Study metric x on € PN. The
cohomology class [n] is dual to the homology class of hyperplane section. Let g be
a holomorphic (hence, projective) transformation of € P¥ preserved u(X). Then it
preserves the cohomology class [ nju(X)]. Hence, by Yau theorem, it preserves the
"Calabi-Yau metric m associated with the embedding as the unique Ricci-flat Kihler
metric m with Kahler form m o J, € [n|u(X)]. The similar argument applies to
the case when g is antiholomorphic transformation and, hence, g,J, = —J,,[9°n] =
—[nl.

Now we prove the converse assertion. Note that the line bundle L is the restriction on
p(X) of the hyperplane bundle [ H] over € PV [3]. Hence, the Chem class c,(L)
isequal to [n|u(X)]. Since X issimply connected, there is only one (up to an isomor-
phism) line bundle with the Chemn class [n|u(X)]. Let ¢ € I(m,+J,). For clarity,
we assume that g preserves the complex structure J,. Then g preserves the Kihler
form m o J; and, hence, the cohomology class [m o Jy1 = ¢,(L). This implies that
the line bundle g*L is isomorphic to L. Hence, g is covered by an automorphism §
of the bundle L. Since any fiber preserving automorphism of L is the multiplication by
a constant, the automorphism § defines up to a constant factor preserves the projective
embedding p: X — P(H®(X,0(L))*) = € P¥. This proves the proposition.

3. THELATTICE I' OF INTEGER PARALLEL 2-FORMS ON THE FERMAT
SURFACE

Let (F,m) be the Fermat manifold. We shall denote by J, the standard complex
structure on F' and by ¢, = m o J, the Kahler form of the metric m. To calculate
the isometry group I(m) we need the explicit description of the lattice I" of integer
parallel 2-forms on the hyper-Kihler manifold ( F, m). It derives from the following
fundamental for us result of 1.1. Piatetskii-Shapiro and I.R. Shafarevitch.

THEOREM 3.1. ({11, §8). Let S C H,(F,R) be the lattice of complex algebraic
cycles on the Fermat surface F and T C H*(F,Z) is the lattice of all integer coho-
mology classes annulated by cycles from S.

1)  The lattice T has a basis e;,e, with the scalar products €, - €, = 0,
€2 = & = 8. Inparticular, F is a singular Kummer surface.

2) Discriminante of the lattice S is equal to 64. -

Using this result, we prove

THEOREM 3.2. The lattice T of integer parallel 2 -forms on the hyper-Kéahler manifold
(F,m) has an orthogonal basis €,,€,,¢, with €2 =4,€3 = & = 8. In particular, for
any y €T, = 0(mod 4).
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Proof. The lattice T is naturally identified with the sublattice T' of the lattice T’ which
consists of parallel 2-form orthogonal to the Kihler form ¢,. Therefore I' contains
the sublattice I'' = Z e, @T" with the orthogonal basis €, €,,¢€,, where €3 = deg F =
4,el=¢& =8.

We need only to prove that I' = I'’. This follows from the facts:

1) T'=T'nN(T'®Q) (theorem 3.1)

2) thelattice T’ is even and integer as a sublattice of the even lattice H2(F,Z)

0 1
r_vs(l 0)@2(-138) 2]. _

Indeed, if we suppose that T'# '/ then there is an element vy € T of the fo
T = o€+ o€+ age, 0 <oy <1, 0 <o <1, 1=1,2. The conditions
Y e2Z,y-¢,€Z,j=0,1,2 imply 4y € Z, 8c; € Z,i = 1,2, and
elementary arithmetic arguments lead to the contradiction. (]

4. COMPUTATION OF THE GROUP OF ISOMETRIES
The result of § 3 imply the following.

THEOREMA4.1. Let ( F,m) be the Fermat manifold. Then the group ofisometries I(m)
is identified with the group of all holomorphic and antiholomorphic transformation of
€ P? which preserved the surface F.

Proof. An isometry g € I(m) preserves the lattice I'. Hence, it preserves the pair
of vectors +¢, € I' as the only vectors with the scalar square 4. This shows that
9.Jo = £J,. Now the theorem follows immediately from the proposition 2.2. ]

Denote by 7 the anti-holomorphic transformation of € P? (and also its restriction
on F) which is induced by the complex conjugation of the homogeneous coordinates.
By theorem 4.1., I(m) = Aut*(F) UtoAut*( F) = Aut( F). Hence, the computation
of the isometry group I(m) reduces to the computation of the group Aut*(F) of all
projective transformations of € P3 which preserve F. We prove more general result.

Denote by F,,, the Fermat hypersurface in € P™~! defined by

T+ ...+2%, =0.

PROPOSITION 4.1. The group Aut*(F,,) of all projective transformations of € P™"!
whichpreserve F, , isthe semi-direct product Aut*(F,, ) = (Z ) »1.S_ ofthe group
S, of all permutations of the coordinates and the group (Z )™ ! = {diag(1,¢,,...,
€, 1),€" = 1} (We describe a projective transformation g by the matrix A of the
corresponding linear transformation § of €™ defined up to a scale factor).
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We prove the proposition by the induction on n. For n = 2, the proof is straight
forward. Letnow n>2 and g € Aut*(F,,) = G. Denoteby A = (4;;) the matrix
which represents g and preserves the function f =z + ...+ z3 |. Then

@4.1) Zu? = Zz?,

where u; = ) 1A,

Multiplying g by some element from G, we may assume that A4, ,, , #1 and
u, ;&€ €z, _,. These imply that

(i) thelinear functions z,,...,z, , on C" are linear independent modulo v =

Up ) — Ty and

() =z, ;#0(modv).
The identity (4.1) implies

Z “?—.Z i =15 | —up; =0(mod v).

i<n-2 i<n—2

By (i), we may consider z,...,%, , asthe coordinates on the subspace v = 0. Using
inductive assumption, we can write

u; = €, Ty (mod v),

where s is some permutation and ef = 1. Muliiplying g by some element from G,
we may assume that

u; = I, + \v, i<n-—2 U, 1 =T, 1 +V.

Then we have the identity

0= ;)l—d [Z ud — E zf] =g+l 4 Z Nzt (mod v).

1<n-1 i<n—1 1<n-2

The conditions (i), (ii) imply that all X; except one vanish. This reduce the assertion to
thecase n=2. =

Retuming to the Fermat surface F = F, ,, we fixed the following notations: i, =

diag(11,...,1,i,1,...,1), i=v—1,0, = i, a_, is the transposition of the homo-
13 o’h » ™ %%

geneous coordinates z, and z.(p,g = 0,...,3).
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COROLLARY 4.1, Let (F,m) be the Fermat manifold. Then I(m) = GN1G, where
G = (Z,)*-S, isthe group of all holomorphic transformations of F generated by the
transformations 3,,a, (p,¢=0,...,3). .

We notice that any projective transformation g which preserve F can be represent
by an linear transformation § of €* which preserves the function f = z§ + ...z5.

The transformation § is defined up to a factor € € €,e* = 1. Hence, we have the
homomorphism

det :G— C*, g |g|=detg.

Corollary 4.1. implies that det(G) = Z, = {¢,€* = 1}.
We set

G°={g€G,lg|=1}, H={g€G,lg|=+1}.
We have a chain of the normal subgroups
G* CHCGCI(m).

LEMMA 4.1. Let w# 0 be a holomorphic 2 -form on F. Then the actionof g € G on
w Is given by

g'w = |glw.
In particular, G® = I°(m).

Proof. To construct w explicitely, we define the holomorphic 3-form « of Gelfand-
Lerey on the surface S= {f =z + ...+ 23 =0} C €* by the relation

df A\y=d'z.

Contracting ~y with the radial vector fields E = ) :r,-a% we receive 2-form & = E|v
on S. Itis E-invariant (E-& = 0) and E-horizontal (E|& = 0). Hence, it defines a
holomorphic 2-form w on F = PS. For g € G, wehave 3*(d*z) = |g|d*z, §°f =
f, 8.E = E. These imply the lemma. u

COROLLARY 4.2,

1)  The group TIU((—'% = Gg—%g is isomorphic to the group of all orientation preserv-
ing automorphisms of the lattice T, that is to the dihedral group D, . All elements from
TI“((—Tn)T = D, have even orders.
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2)  There are exactly 10 points on the Riemannian sphere € P! of the parallel
complex structures J, (sec § 1) which have non-trivial stabilizer in the group —u(—)—
They are decomposed into 3 orbits under "’((Tn)T

D t=0,00 2 ttt=1,3) tt*=-1.

The corresponding subspace of E is generated by the following lattice:

1) Ze®Ze, fort=0,2) Ze®Ze fort=1,3) Ze®Z(€+¢,)
fort =y := 81

Moreover, J = —Jo,J_y= —J, fort,t* = £1. -

The corollary 4.2. 1) and the proposition 2.1. 3) imply that the determination of
2 -dimensional fixed point set Fix(g), g € I(m) reduces to the case when g is an
involution.

In the next paragraph we shall determine such sets which are projective lines.

5. PROJECTIVE LINES ON THE FERMAT SURFACE

We determine all projective lines on the Fermat surface F and prove that they are
totally geodesic submanifolds with respect to the Calabi-Yau metric m. Let A = {(z, :
T, T, ! T3),TyT,T,73 = 0} bethe coordinate tetrahedronin € P3. Let A/ = {5 =
z,=0} and A(i=1,2,3) are the pair of its opposite edges.

The intersection of each edge A, (respectively A/) with the generalized Fermat
surface F4 = {z& + ...+ 1¢ = 0} of the degree d consists of the d points P(,a)
(respectively P'(1, a)) with the homogencous coordinates

(x:€:0:0) forP(i,o)

(T :T;:T;:%;) =
OTTHTTTE T (0:0: ¢t x)  for PG4, D).
Here (1,j,k) is a cyclic permutation of the indices (1,2,3),x2 = ¢, €= V1 isa
fixed primitive root of the degree d from the unit.
Denote by I(1,a,b) the projective line which passes trough the pomts P(i,a) and
P'(1,b). Obviously, I(1,a,b) C .

PROPOSITION 5.1. .

1) Al projective lines on the Fermat surface F¢ C € P? are exhausted by the
lines 1(i,0,b),(5,0,0) €EZy x Z ;x Z 5d > 2.

2)  Two distinct lines 1(i,a,b), I(7',a',¥) intersect iff one of the following con-
ditions is satisfied:

) i=4#—-1, a+b=ad -b+1

2) i=# 1, a=d orb=V

3) i=1+1, a-b+1=a+¥
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To prove 1) it suffices to check that a line | C F¢ intersectes two opposite edges of
the tetrahedron A. In the opposite case, the line | intersect two faces on A. We may
assume that the points of the intersections P, () have the coordinates (1 : p : ¢ : 0)
and (0:r:s:1),pers#0.

But the line [ = (PQ) can’t be contained into F¢ since the polynomial

F() =1+ (p+ )%+ (g+ st)?+ t?
isn’t identicélly zero. This contradiction proves 1). The proof of 2) is straighforward. =

Thus we have 48 lines on the Fermat quartic surface F' = F*. They are numerated
by elements of the group Z, x £, x Z,. We consider some properties of these lines.
Define an equivalence relation on the set of lines on F' by the formula:

I(i,0,b) ~ (', 0", b)Y i=4,a+b= o' +b,a—b=a" — V.

PROPOSITION 5.2. Each equivalence class of lines consists of two non-intersecting lincs
! and I'. They compose an orbit of the normal subgroup {diag(1,€,,¢,,€; - €;),€ =

1} ofthe group I(m) acted on the set of lines. The set LUl is the fixed point set of
an involution from the group H C I(m) (seec § 4). The group H acts transitively on
the set of the lines. .

For example, let a + b = 2p, a — b= 2q, p,q € {0,1} C Z,. Then the lines
1(0,a,b), I(0,a+2,b+2) are equivalente and they compose the fixed point set of the
involution

a_ 1
BP9 = (0,05)7 " (0,03) %1500 a3

COROLLARY 5.1. Each projective line on the Fermat surface F is 2 -dimensional to-
tally geodesic submanifold of the Fermat manifold (F,m). .

Let Q = {y € CP?,y2 + ...+ y3 = 0} be the quadric. We identify Q with
CP' x €P!' such that the fibres of the projections ;,m, onto the factors compose
two families of the straight generatrices of Q. The mapping ¢: CP? — CP?,(z,) —
(z?) map F onto Q. The mappings w09 : F — CP', i=1,2 define two pencils
&1, & of elliptic curves of the degree 4 in F. Projective lines of F' are mapped by
g onto straight generatrices of @ and, hence, are contained into singular fibres of the
pencils. :
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PROPOSITION 5.3. The lines I(4,a,b) and U(+',a’',b') are contained into one fibre
of the elliptic pencils iff they are equivalent under the action of the normal subgroup
{diag(1,€,,€,,€3),€2 = 1} C I(m) acted on the set of the lines, i.c. iff

i=1, a=a(mod2), b=b(mod?2).

a
COROLLARY 5.2. 48 lines on F are decomposed into 12 classes. Each class consists
of 4 lines, which compose an singular fibre of one of the elliptic pencil. Lines from
different fibres of the one pencil do not intersect. ‘ .

Six singular fibres of each elliptic pencil are situated over points of the base CP!
S? which identify (up to a projective transformation) with two vertices 0,00,+1,+1
of the octahedron (see [8]),ch. I, § 11.)

PROPOSITION 5.4.

1)  The self-intersection number of a projective line on the Fermat surface F is
equal 2. Two distinct lines isn’t homologous.

2) Let fy,..., fys bethe cohomology classes dual to the classes of the projective
lines and e, is the cohomology class of the Kihler form m o J,. Then

1
e = Tz'(f‘ + ...+ fig).

3)  The 20 -dimensional cohomology space H“'(F,€) is generated by the
classes f,...,fss-

Proof. 1) Since the surface F has trivial canonical bundle K, the normal bundle N,
of asmooth curve C in F coincides with the canonical bundle K, thatis, the bundle
of holomorphic 1-forms. Hence, the self-intersection number

C-C= deg NC= ‘_X(C)s

where x(C) is the Euler characteristic. Suppose that the curve C is rational. Then
C-C=—x(C) = -2 and the bundle K has only zero section. The second assertion
shows that the curve C is not deformable. Since the manifold F is simply connected,
this implies that distinct projective lines isn’t cohomologous.

2) Let M;, be the plane contained the point P(3,a) € A; N F and the opposite
edge A, of the coordinate tetrahedron. The set F' N M, consists of four projective
lines. Hence, the union of these lines is linear equivalent to the class of hyperplane
section which is dual to e,. Averaging on 12 such planes, we prove 2).
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3) Let f,..., f,s bethecohomology classes which are defined by the lines from
singular fibers of the elliptic pencil &,. These classes generate the hyperplane o' C
H“(F, C) orthogonal to a general fibre a of the pencil &, [1], §8. Let I C F
a line which is contained into a fibre of the pencil £,. Then [ isn’t contained into the
fibresof & and associated cohomology class f¢ at. Hence, the classes fi,..., fo, f
generate the space H!'1(F, €). This proves 3). "

It is known that there are 27 projective lines on a cubic, in particular, on the Fermat
cubic F*. They generat the Picard lattice [3). Similar result which we state without
proof is true for the Fermat surface F = F*.

THEOREM. The lattice S of complex algebraic cycles on the Fermat surface F is gen-
erated by the classes of 48 projective lines. n

6. GROUP CHARACTERIZATION OF THE DISTINGUISHED
COMPLEX STRUCTURES

Now we construct the involutions p € I(m) such that the homology class of Fix
(p) C F is dual to the harmonic 2-form €, = V2mo J,, (see § 3,4). This implies
the characterizazion of the distinguished complex structures on the Fermat manifold
(F,m) in terms of the stabilizers in the group I(m). This results are used in § 7
to study the fixed points set of involutions.

Denote by A C PGL,(C) the finite group generated by the projective transforma-
tion

0j5 = 0p©0;, =00y,
where (4,7, k) are cyclic permutations of (1,2,3) and o,, o, are definedin § 4. Then
Ar (Z,)*. Let B the group generated by A and the complex conjugation 7. We
set

Pi = Qp;©Q; 07, py3=0g0;0;, $=1,2,3.
The involutions p;(i = 1,...,6) generatethe group B ~ (22)5 and p,0p,0...0pg =
id . Noticethat B preserves the Fermat surface F. Hence, we may identify B with a

subgroup-of I(m). Then A= BNI°(m).

THEOREM.6.1. Foreach b € B, the fixed points set Fix(b) of b into F and the Euler
charactetistic x(Fix(b)) are described in the following table:
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Table 2.

beB Fix b x(Fix b) numbers of
elements b

id F 24 1

A—{id} finite set 8 15

Pj connected 2 dimensional -8 6

submanifold
other 0 0 10

Proof. 1t is well known [4] that for K3 surface F x(F) = 24. Since A C I°(m),
the second row follows from proposition 2.1. 6) To establish last row we check straigh-
forward that the involutions 7, 0,7 = (ijk)‘l’(bjbk)-l ,0;;¢,7 have not fixed points
in F. Now we prove the third row.

Set

i

D= {diag(1,6l:6l:63))6? = l}: (Z4)3'
Then D is a normal subgroup of I(m).

LEMMAG6.1. Let h € TG be an antiholomorphic involution and Z ,(h) is the central-
izerof h into D. Then

(i) the group Z(h) acts transitively on the set of the connected components of
Fix(h). Hence, the components have equal Euler characteristic.

(i) If x = x(Fix(h)) > O then Fix(h) is the union of x/2 spheres. If x =0,
then Fix (h) is the union of tori. If ¥ < 0, then Fix(h) is a2 connected set.

Proof. First, we show that (i) implies (ii).

Let Fix(h) = C,U...UGC;, C;NC; =0, i# ] be the decomposition of Fix(h)
into the connected components. By (i) we have x(C,) = ... = x(C,) = %x. Since
Jh-complex submanifolds C;,j =1,...,k areoriented, (where J b jsthe h invariant
complex structure) we have x(C;) € {2,0,-2,-4,...}. Hence, if x > 0 then
X(C;)=2,C;~ S If x =0, then C; ~ T2. Let x < 0. Note that C; are smooth
Jh-complex curve. Using the adjunction formula for a smooth curve on a surface with
the trivial canonical bundle, we have C,- -C; = —x(Cj) = -—%x > 0. Hence, the
intersection form (C; - C;) = diag(~%,...,~%) is positively defined. On the other
hand, the intersection form of complex algebraic cycles on a compact complex surface
has signature (+,—,...,—) [3]. So k=1 and Fix(h) = C, is connected.
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To prove (i), we define the ramified covering with the group D 7 : CP3 — CP3?
by the formula y; = z}(0 < i < 3). It projectes the Fermat surface F C CP3
onto the plane € P2 = {3"y, = 0}. Since D is a normal subgroup, the involution h
defines some involution A = hD = Dh on € P2. The assertion (i) is equivalent to the
following statement: ,

(i")  The map = projects any connected component of Fix (h) onto w(Fix(h)).

The projection w(Fix(h)) canbe ramified only over points from the set w(Fix(h))
NA C Fix(h) NA, where A = {yyy,5,¥; = 0} is the coordinate tetrahedron. It can
be checked that h = 7, ap3 07 OF @y 0 ap3 0 7 (see § 7) and Fix(h) ~ RP2. We
consider only the case h = p;, = ay,; 0 a3 o 7. Then w(Fix(p,)) = Fix(p,) ~ RP?,

Fix(p))NA={Pp=(1:(=-1):0:0), P,=(0:0:1:(-1))}.

This implies i’) for h = p,. For other case, the proof is similar. Of cause we use that
the pre-image of a regular point = € n(Fix(h)), h € 7G, is anorbitof Z,(h). Itis
easy to prove.

Now we compute x(Fix p,). The pre-image n~!(P,) of each ramified point
P,, i = 1,2 consists of 4 points which are invariant by p,. The simple calculation
gives

Zp(p) = {diag(1,6,,6,,85), 6, = 6, - 63} = (Z,)*.

Let v, e, f be the number of vertices, edges and faces of a triangulation T of w(Fix (p,))
~ RP?, which has the points P,, P, as vertices. Then v — e+ f = x(RP?) = 1.
For the corresponding triangulation T = 7~!(T") of Fix(p,;) we have

vV=16v—-(16 —4) .2, &' =16¢, f =16,
x(Fix(p)) =v' —¢' + f'= -8

Now the lemma 6.1 (ii) shows that Fix(h) is a connected surface of genus 5. For the
other involutions p;, the calculations are similar. This proves the theorem. n

REMARK. The theorem 6.1 remain true if the Fermat surface F is replaced by a quartic
X from the connected component () 5 F on the set of B-invariant smooth quartic in
€ P3. These quartic are defined by

3

4 2.2, .22 =
do E T; + cycl q(Tpz] + T7T)) + 4420 T1%233 = 0,
1=0

9=(490:9¢1:92:93:3s) € RP*.



CALABI-YAU METRIC ON THE FERMAT SURFACE 37

PROPOSITION 6.1. For any B-invariant quartic X € Q, the space H,(X,€)B of
B-invariant. elements from H,(X, C) is 1-dimensional.

Proof. Set H, = H{(X,T),HB = H(X,T)B. Since Hy = HF ~ H, = HF ~
'€, H, = Hy =0, itis sufficient to prove that k := dim HZ = 3. It well known that

=[BT (b
beB

where t(b) is the trace of the induced operator b, € End H (X, T).
We have

t(b) = trd,|g trb,lg, + tr by, +ir b,y =
=Y (=Dftrbd,|y, = L(b)

where L(b) is the Lefschetz number. By the known formula [6], L(b) = x(Fix(b)).
Using the results from the table 2, now we can calculate k as follows:

=Bl Y ub) =27 Exmx(b)) =

beB
=2‘5(24+8-15—8-6)=3

THEOREM 6.2. Let X be a quartic from Q and m is the Calabi-Yau metric on X
associated with the embedding X C CP>. Then (i) there is (unique up (o a signe)
B-invariant parallel complex structure J on X.

(i) The J-complex curves C; =Fix(p;), j = 1,...,6 aremutually homologous
and are dual to an auto-dual parallel 2 -form ~ with 4> = 8.

Proof. (i) follows from the relation Taﬁ“(_‘ ~ Z, and the proposition 2.1. To prove
(ii), we remark that the self-intersection number C C of a smooth complex curve C
on K3-surface equals up to sign to the Euler characteristic —x(C). In particular, for
J-complex curves C;, we have

Cj 'Cj = X(FiX(P]')) =8

By proposition 6.1., the space of B-invariant element H,(X, C)8 is 1-dimensional.
Hence, it is dual to the 1-dimensional . subspace of H?(X, C) generated by the auto-
dual Kzhler 2-form moJ. Since the group B = (Z,)> is commutative and preserves
J, it preserves also the fixed points set C; = Fix(p;) and the orientation on C;. This
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means that the homology class [C;] is B-invariant and, hence, it does not depend on
7 =1,...,6. This proves (ii). m

Returning to the Fermat manifold ( F, m), we have

COROLLARY. Let 7 € I(m) be the involution of F defined by the complex conjuga-
tion. Then there is a T-invariant integer parallel 2 -form~ € T with 42 = 8. Under
the notations of § 3,4 one may assume that

N=€ =V2Zmol,.

Proof. By theorem 6.2, there is an integer parallel B-invariant (and, hence, 7-invariant)
2 -form 4 with 4% = 8. By theorem 3.2, the only integer parallel 2 -form with square 8
are te¢,,+e,. The isometry group I(m) permutes these 2 -forms (see § 4). Hence,
wemay assume that y = €,. Accordingto § 4, the associated with €, parallel complex
structure is J,, (J,) = e5. More precisely, we have €, = V2Zm o J,. Indeed, for any
parallel complex structure J, we have »

(moJ)2=(moJy)>=volF=4, & =8.

Under the identification from the corollary, we have

PROPOSITION 6.2. 1) Let g € G = I(m,J,). Then gt preserves the complex struc-
ture J,, t* = 1, if |g| = t*. In particular, g7 preserves J, if |g| = 1 and g7
preserves J, if |g] = 4. '

2)  I(m,J)) =I°(m))1,7}, I(m, J,) = I°(m)A{1,,7}.

3)  The subgroups of I(m), which preserve J, up to a signe, are

I(m,xJy) = I(m), I(m,xJ,) = H)\{1,7},
I(m,+J,) = HM1,1,7}.

Proof. By results of § 4, the group I(m) = G U 7G acts on the space E = Re, +
Re, + Re, as the dihedral group D,. More precisely, in the basis ¢, = m o Jy,€¢; =
—V2mo J, e = V2moJ, wehave 7|, = diag(—1,-1,1);g|y = diag(1,|g|)
for g € G where |g| is the matrix of the multiplication by the complex number |g|.
Indeed, w = €, + i€, is Jy-holomorphic 2-form and g*w = |glw bylemma4.1. Now
the proof is straightforward. ]
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7. THE CLASSIFICATION OF 2-DIMENSIONAL FIXED POINTS SETS OF
INVOLUTIONS

Now we enumerate connected 2 -dimensional components of all sets Fix(h), h €
_I(m) onthe Fermat manifold ( F, m). According to the proposition 2.1 and the remark
at the end of § 4, we may assume that h € I(m) — I°(m) and it is an involution.
By corollary 4.2, h preserve precisely one of the 5 distinguished complex structures J,
(considered up to a signe). Moreover, conjugating h in I(m), we may suppose that
h preserve one of the complex strucwres J, = Jo, Jy,Jy, X = 7‘2-( 1+ 1). Hence, the
set Fix(h) is a J,-complex curve. All such involutions h (up to a conjugation) and
its fixed points set Fix(h) are described in the following

THEOREM 7.1. Any involution g € I(m) — I°(m) is conjugated into the group I(m)
to one and only one of the involutions h from the table 3. ]

There are also indicated: the h-invariant complex structure J,, the connected com-
ponents C of the set Fix(h), the Euler characteristic x(C) (equal up to the signe to
the intersection number C - C), the integral d(C) = [, wher y € T NR*(moJ,)
is the generator of the group F'NR(moJ,) ~ Z (thatis, y=¢, fort=0, y=¢, for
t=1, y= ¢ —¢ fort = x), thenumber a of the involutions g conjugated to h, the
number b of 2-dimensional component for all sets Fix(g), ¢ = zhz™!, z € I(m).
We denote by C? a surface of genus p.

Table 3.

h Ji Fix(h) x(C) d(C)
Gy Jo c? -4 4 4 4
oy Jo c? -4 4 24 24
Loty Xy Oa3 Jo C'+C° 2 1 24 48
Qg Q3T I, cs -8 8 6

00y Qg O3 T Jy 9 0 -

T J 0 0 - 0
Wiyt Jy C! 0 4 12 12
Oy T J Cc%+C° 2 2 24 48
0T J, c® 2 4 16 16
g ey T J, c* -2 8 24 24
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COROLLARY 7.1. (i) There are 76 J,-complex, 66 J,-complex and 40 J_-complex
connected 2 -dimensional submanifolds which are fixed point sets of involutions h €
I(m).

(i) The complete number of connected 2 -dimensional submanifolds which are
connected components of the sets Fix(g), is equal 288 = 76+ 66+ 66+ 40+40 = 25.32
Eachof these submanifolds is complex with respect to one of the 5 distinguished complex
structures J, (considered up to a signe).

Outline of the proof. The first and the second columns of the table are established by
the straighforward calculations based on the proposition 6.2. The Euler characteristic
x(Fix(h)) is calculated asin § 6 or, in some cases (for example, for h = i ! i,7) by
means of the analytical geometry. Then the results of the third and the fourth columns
follow from the lemma 6.1. The calculation of the numbers a and b is straightforward.
To calculate d, we note that for J,-holomorphic involution h the form ~v = ¢, =
mo J, is cohomologic to the Kahler form of the metric induced on F' from the Fubini-
Study metric. Hence, d(C) is equal to the degree of the algebraic curve C C CP?
or, which is the same, to the intersection number C - H of C and a general hyperplane
section H. For J,-holomorphic involution h, the form 4 = ¢, = V2m o J; is dual
to the J,-complex cycle C, = Fix(p,) (theorem 6.2) and, hence, d(C) = C - C, is
equal to the number of the intersection point |C N C,|. (Since C and C, are totally
geodesic submanifolds in ( F,m), all intersections are transversal.)

For J, -holomorphic involution h,y = ¢, — ¢, and w, = 2¢, + i(¢; + €;) isthe
J,-holomorphic 2-form. Hence, it integral over J, -complex cycle C vanishes. So

we have
d(C)=/(ez—c,)=+2/ez—/(el+cz)=2/¢2
Cc Cc c C

= 2C -Fix(p,).

Since the form €, can be written explicitely as the real part of the J,-holomorphic
2 -form w, last integral can be calculated. ]

8. THE J,-HOLOMORPHIC EMBEDDING OF THE FERMAT MANIFOLD
INTO CP3 AND THE ASSOCIATED CALABI-YAU METRIC

Let X be an B-invariant quarticin € P? from the family Q with the Calabi-Yau
metric m, in particular, the Fermat manifold. (see § 6). We denote by J, (resp., J)
the standard (resp., B-invariant) complex structure on X. Since 7,J, = —Jp, 7,J =
J the Kihler forms moJ, and mo J are orthogonal and, hence, the structure J, and
J anti-commute.
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Consider the fixed points sets C; = Fix(p,) of the involutions p;, € I(m), ¢ =
1,...,6, see § 6. By the theorem 6.1, 6.2, the sets C; are J-complex connected
smooth curves of genus 5. The curves C; are mutually homologous and, hence, they
are linear equivalent. We denote by L the line bundle defined by C;.

LEMMAB.1. Let G be asmooth irreducible curve of genus N > 0 ona K3 -surfaceY
and L = [ C) is the associated line bundle. Then

@) dim H°(Y,0(L)) = N+ 1,H(Y,0(L)) = H*(Y,0(L)) = 0;

(ii) the linear system |C| has no basic points and, hence, it is defined the holomor-
phic map

j:Y = P(H°(Y,0(L))*) ~ C€PV.

Proof. Since the canonical bundle K is trivial, the adjunction formula irhplics Llg =
K and HO(C,L|g) = H*(C,Ky) = €V. Since Y is simply connected, H!(Y,0)
= 0. Hence, the cohomological sequence, induced by the sequence of sheaves

0 — Oy — Oy(L) = Ox(L) 0

can be written as
0 - H(Y,0) = € - H(Y,0(1)) - ¢V =
= H%(C,0(K)) — 0.
So we have HO(Y,O(L)) ~ TV*!. By the duality of Kodaira-Serre, H2(Y, O(L))

= HO(Y,0(L*)* = 0, since the divisor C is effective. Using the addivity of Euler
characteristic, we have

x(Y,0(1)) = h°(Y,L) — h'(Y,L) + h*(Y,L) =
= N+1-hi(Y,L) = x(Y,0) + x(C,0(Kp)) =
=2+(N-1)=N+1.
Hence, H'(Y,0(L)) = 0. These prove (i) The surjectivity of the map H °(Yy,0(L))
— H°(C,O( L|p)) implies that the basical set of |C| is contained into the set of points
where all sections of the bundle L|; = K vanish. The last set is emply. This proves
the lemma.

Applying the lemma to the J-holomorphic curves C; of genus Son X € Q, we
receive a J-holomorphic map

j:X - CP’=P(H*(X,0(L)"), L=IC).
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PROPOSITION 8.1. All fibers ofthemap j : X — C P* are finite and the image j(X)
is contained into the intersection of three quadric in € P> .

Proof. By theorem 6.2., the curve C,(i = 1,...,6) is dual to the cohomology class
V2] [m o J]. Hence, the line bundle L = [C;] is positive and, by Kodaira theorem, it
is ample. This implies that all fibers of ; is finite. To prove the second assertion, we
compute h®(X,L®L). Asinthe proof of the lemma 8.1, we show that A®( X, L®L) =
x(X,0(L ® L)). Then the Noether formula gives

R(X,L® L) = x(X,0) + %((L@L) (L®L) +(L®L)-K)

=2+%(2c,.) [(2C) =

=2+2-8=18.

On the other hand, h°(CP3%,0(2)) = 21 = 18 + 3. Now the arguments from [3], ch.
4, § 5 establishe the assertion. -

We state without proof more precise result.

THEOREM 8.1. The divisors C; = Fix(p;) (i = 1,...,6) on the complex surface
(X,J) are very ample, that is the associated holomorphicmap j : X — CP3 =
P(H®(X,0(L))*) is an embedding. The Calabi-Yau metric m' associated with em-
bedding j is related with the standard Calabi-Yau metric m on X (associated with
the embedding X C € P3?) by: m' = V2m. The image j(X) coincides with the
smooth complete intersection of three diagonal quadric of the form {{ € € P, a, &2+
...+ agf2 =0}. Thegroup B C I(m) actsin j(X) as the projective group

{diag(1,¢,,...,€),6 = £1} ~ (Z,)°.
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