Calabi-Yau metric on the Fermat surface. Isometries and totally geodesic submanifolds

D.V. ALEKSEE , SKY, M.M. GRAEV
MGZPI, USSR, Moscow,
Radischevskaya, 18

Abstract

The hyper - Kahler Calabi-Yau metric m on the Fermat surface

$$
F=\left(x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}=0\right) \subset \mathbb{C} P^{3}
$$

associated with the embedding $F \subset \mathbb{C} P^{3}$ is studied. We prove that the lattice of integer parallel 2 -forms on the Riemannian manifold (F, m) has the Gram matrix $\operatorname{diag}(4,8,8)$. We use it for calculation of the isometry group Isom (m). The action of this group on the twistor space of parallel complex structure on (F, m) is described and the existence of 10 complex structures with non-trivial stabilizer in Isom (m) is established. Then we give the classification of all connected 2 -dimensional totally geodesic submanifolds which are fixed points sets of isometries. There are 288 such manifolds of genus $0,1,2,3,5$. They are complex curves respect to one of the 5 (up to a sign) distinguished complex structures.

From the physical point of view such submanifolds are interpreted as (holomorphic) instantons for sigma model with the value in K3 surface. Such instantons are studied by physicistis in relation with string theory.(*)

The generalization of the results to some class of Calabi-Yau metrics on K3 surfaces X, associated with the embeddings $X \subset C P$ is given.

Key-Words: Calabi-Yau, K3 surface, isometry group.
1980 MSC: 53 C 25, 53 C 80.
(*) See for example: Y. Kogan, D. Markushevich, A. Morozov, M. Olshanetsky, A. Perelomov, A. Rosly, «Some examples of instantons in sigma models. K3 manifolds.» Preprint n. 32, 1988, 1-28.

1. INTRODUCTION

The Fermat surface F is the complex surface in $\mathbb{C} P^{3}$ defined by the equation

$$
f \equiv x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}=0
$$

where x_{0}, \ldots, x_{3} are the homogeneous coordinates in $\mathbb{C} P^{3}$.
The Fermat surface is a $K 3$-surface, i.e. a simply-connected compact complex surface with Chern class $c_{1}=0$. Any K3-surface as a real manifold is diffeomorphic to F [2].

By Yau theorem [10], any Kähler metric κ on a $K 3$-surface X determines a Ricciflat Kähler metric. It is defined as the unique Ricci-flat Kähler metric m whose Kähler form is cohomologous to the Kähler form of the metric κ. This metric m has two properties:

1) m is hyper-Kähler, i.e. its holonomy group

$$
\operatorname{Hol}(m)=S p(1)=S U(2)
$$

2) m is anti-auto-dual, i.e. $* R=-R$, where R is the curvature 2 -forms of m and * is the Hodge operator.

Note that for a Riemannian metric on a 4 -manifold the properties 1) and 2) are equivalente. By Hitchin theorem [10]. Ricci-flat metrics on $K 3$-surfaces exhaust all non-flat hyper-Kähler metrics on compact 4 -manifolds.

Any holomorphic embedding $X \xrightarrow{\mu} \mathbb{C} P^{N}$ of $K 3$-surface X defines Kähler metric κ on X induced by the Fubini-Study metric on $\mathbb{C} P^{N}$. The corresponding Ricci-flat metric m on X is called Calabi-Yau metric associated with the embedding. In the paper we study the Calabi-Yau metric m on the Fermat surface F associated with the tautological embedding $F \subset \mathbb{C} P^{3}$. We shall call such metric standard. The Riemannian manifold (F, m) will be called Fermat manifold. The explicit form of the metric m is not known. Nevertheless, using some results from the geometry of $K 3$-surface, we compute the group $I(m)$ of isometries and determine all totally geodesic submanifolds of the Fermat manifold which are fixed points sets of isometries.

In § 2 we establish some properties of the group $I(m)$ of isometries of a hyperKähler metric m on a 4 -manifold X. We study the action of $I(m)$ on the space $E \simeq$ \mathbf{R}^{3} of parallel 2 -forms on X and on the Grassmanian $G_{2}(E) \simeq \mathbb{C} P^{1}=\mathbb{C} \cup\{\infty\}$ of oriented 2 -subspace of E which identifies with the manifold of parallel complex structure on X. We investigate the fixed points set Fix (g) of an isometry $g \in I(m)$. Finally, we prove that iff m is the Calabi-Yau metric associated with a linear normal embedding $X \subset \mathbb{C} P^{N}$ then the group $I\left(m, \pm J_{0}\right)$ of isometries of m which preserve the induced complex structure J_{0} up to a signe is identified with the group Aut (X) of (anti) holomorphic transformations of $\mathbb{C} P^{N}$ preserving X. In $\S 3$ we determine
the lattice $\Gamma \subset E$ of integer parallel 2 -forms on the Fermat manifold (F, m). It has Gram matrix diag $(4,8,8)$ with respect to some basis $\epsilon_{0}=m \circ J_{0}, \epsilon_{1}, \epsilon_{2}$. Using this result, we calculate in $\S 4$ the group $I(m)$ of isometries explicitely:
$I(m)=G \cup \tau G$, where τ is the antiholomorphic involution of $F \subset \mathbb{C} P^{3}$ defined by the complex conjugation of the homogeneous coordinates in $\mathbb{C} P^{3}$ and $G=$ $I\left(m, J_{0}\right)=S_{4} \cdot\left(\mathbb{Z}_{4}\right)^{3}$ is the group of J_{0}-holomorphic transformations of F generated by permutations of the coordinates x_{0}, \ldots, x_{3} in $\mathbb{C} P^{3}$ and its multiplications by $\sqrt[4]{1}$. The group $I(m)$ has the order $2^{10} \cdot 3$ and acts in E as the full group of orientation preserving automorphism of the lattice Γ, that is the dihedral group D_{4}. In the Grassmannian $G_{2}(E)=\mathbb{C} \cup\{\infty\}$ of parallel complex structure $J_{t}, t \in \mathbb{C} \cup\{\infty\}$ there are exactly 10 distinguished complex structures with non-trivial stabilizer in D_{4} :

1) $J_{0}, J_{\infty}=-J_{0}$;
2) $J_{t}, t^{4}=1, J_{-t}=-J_{t}$
3) $J_{t}, t^{4}=-1, J_{-t}=-J_{t}$.

As indicated above, they decompose into 3 orbits of the group D_{4}. The complex structure J_{0} is the natural structure of the complex surface $F \subset \mathbb{C} P^{3}$.

In § 5 we study and enumerate all projective lines on the Fermat surface F. There are exactly 48 such lines. They are mutually non-homologous and generate 20 -dimensional subspace in $H_{2}(F, \mathbb{C})$ dual to the space $H^{1,1}(F, \mathbb{C})$. The lines are connected components of the fixed point set of involutions $h \in I(m)$. Hence, they are totally geodesic submanifolds of the Fermat manifolds (F, m).

In § 6 we define some subgroup $B \approx\left(\mathbb{Z}_{2}\right)^{5}$ of the group $I(m)$ of isometries of the Fermat manifold. It contains J_{0}-antiholomorphic involution τ and is generated by 6 antiholomorphic involutions $\rho_{j}, j=1, \ldots, 6$. We describe the fixed points set $\operatorname{Fix}(h)$ for $h \in B$. In particular, we prove that $C_{j}=\operatorname{Fix} \rho_{j}(j=1, \ldots, 6)$ is topological sphere with 5 handles. Then we show that the subspace $H_{2}(F, \mathbb{C})^{B}$ of B-invariant elements from $H_{2}(F, \mathbb{C})$ is 1 -dimensional. This implies the existence a unique (up to a signe) B-invariant parallel complex structure J. Since C_{j} ($j=$ $1, \ldots, 6$) is a B-invariant J-complex curve, the dual harmonic integer 2 -form $\gamma_{j} \in$ Γ is B-invariant. Hence, it is proportional to $m \circ J$. Since

$$
\boldsymbol{\gamma}_{j} \cdot \gamma_{j}=C_{j} \cdot C_{j}=-\chi\left(C_{j}\right)=8
$$

and the only elements $\gamma \in \Gamma$ with $\gamma \cdot \gamma=8$ are $\pm \epsilon_{1}, \pm \epsilon_{2}$, we can indetify $\gamma_{1}=\gamma_{2}=$ $\ldots=\gamma_{6}$ with ϵ_{2}. Then J is identified with the distinguished complex structure J_{1}. Hence J_{1} is characterized as the unique (up to a signe) B-invariant parallel complex structure.

In § 7 we classify all connected 2 -dimensional totally geodesic submanifolds C in the Fermat manifold (F, m) which are connected components of fixed points sets $\operatorname{Fix}(g), g \in I(m)$.

They are connected components of the fixed points set Fix (h) of involutions $h \in$ $I(m)$. There are $288=2^{5} \cdot 3^{2}$ such submanifolds with the Euler characteristic 2,0 , $-2,-2^{2},-2^{3}$. Thy are complex submanifolds with respect to one of the distinguished complex structures. In particular, the J_{0}-complex submanifolds C are either projective lines (i.e. 48 spheres) or spheres with 3 handles (28); the J_{1}-complex submanifolds are spheres (48), tori (12) or spheres with 5 handles (6); the J_{χ}-complex submanifolds ($\left.\chi=(1+i) / \sqrt{2}, \chi^{4}=-1\right)$ are spheres (16) or spheres with 2 handles (24).

In § 8 we represent the Fermat surface F with the complex structure J_{1} by a complete intersection of 3 diagonal quadratic in $\mathbb{C} P^{5}$ and state that the Calabi-Yau metric m^{\prime} associated with the embedding $F \subset \mathbb{C} P^{5}$ is isometric to $\sqrt{2} m$, where m is the standard Calabi-Yau metric on F. In this model the group B acts as the projective group $\left\{\operatorname{diag}\left(1, \epsilon_{1}, \ldots, \epsilon_{5}\right), \epsilon_{i}^{2}=1\right\}$.

To construct the embedding $j: F \rightarrow j(F)=K \subset \mathbb{C} P^{5}$ we prove that J_{1}-complex curves of genus $5 C_{j}=\operatorname{Fix} \rho_{j}(j=1, \ldots, 6)$ are linear equivalent and define the very ample linear bundle $L=\left[C_{j}\right]$ with $H^{0}(F, O(L)) \simeq \mathbb{C}^{6}$. The map j is defined as the map $F \rightarrow P\left(H^{0}(F, O(L))^{*}\right)$ associated with the bundle L.

REMARK. 1) Many results of $\S 6-8$ remain true if one changes F by an B-invariant quartic $X \subset \mathbb{C} P^{3}$, see §6-8.
2) The explicit construction of the Calabi-Yau metric m on F reduces to the identification of two holomorphically non-equivalent $K 3$-surface : $F \subset \mathbb{C} P^{3}$ and $K \subset \mathbb{C} P^{5}$, that is, to the explicit description of the diffeomorphism $j: F \rightarrow j(F)=$ $K \subset \mathbb{C} P^{5}$. This diffeomorphism is $I\left(m, J_{1}\right)$-equivariant and it is an isometry of the Riemannian manifolds (F, m) and ($K, m^{\prime} / \sqrt{2}$).
3) The surface K is a Kummer surface in $\mathbb{C} P^{5}$ associated with the Picard group $\mathrm{Pic}_{0}(C)$ of some curve of genus 2 . More precisely, C is the 2 -fold covering of the Riemannian sphere ramified in 6 vertices of the octahedron. The embedding $K \subset \mathbb{C} P^{5}$ is constructed as in [3]. Ch. 6.

2. PROPERTIES OF ISOMETRIES OF A 4-DIMENSIONAL HYPER-KÄHLER MANIFOLD

Let m be a non-flat hyper-Kähler metric (i.e. a Riemannian metric with the holonomy group $\operatorname{Hol}(m)=S p(1)$) on a compact 4 -manifold X. We denote by $E \approx \mathbf{R}^{3}$ the space of parallel 2 -forms on (X, m) with the natural orientation and the Euclidean metric

$$
\alpha \cdot \beta=\int_{X} \alpha \wedge \beta
$$

The manifold of parallel complex structures on (X, m) is identified with the Grassmanian $G_{2}(E)$ of oriented 2 -subspace in $E:$ Parallel complex structure J defines the
subspace $\langle J\rangle \subset E$ withe the base $\operatorname{Re} \omega, \operatorname{Im} \omega$, where $\omega \neq 0$ is a holomorphic 2 -form on the complex manifold (X, J). In other words, $\langle J\rangle$ is the orthogonal complement to the Kähler form $m \circ J$ in E. The manifold $G_{2}(E)$ is identified with the complex quadric

$$
Q=\left\{\alpha \in P(\mathbb{C} \otimes E) \simeq \mathbb{C} P^{2}, \alpha \cdot \alpha=0\right\} \simeq \mathbb{C} P^{1}=\mathbb{C} \cup\{\infty\}
$$

A quantity $t \in \mathbb{C} \cup\{\infty\}$ corresponds to the point $\alpha \in Q, \alpha=\left(2 t, i\left(t^{2}+1\right), t^{2}-\right.$ 1) and to the 2 -subspace of E^{3} with the base $\operatorname{Re} \alpha, \operatorname{Im} \alpha$. The associated complex structure on X will be denoted by J_{t}. We denote by Γ the lattice of integer 2 -forms in E. Let $I(m)$ be the (finite) group of isometries of the metric m and $I^{0}(m)$ is the kernel of its natural representation in E.

LEMMA 2.1. Let m be a hyper-Kähler metric on 4 -manifold X (It is not supposed that X is compact and simply connected).
(i) Any isometry $g \in I(m)$ induces in E a proper orthogonal transformation. Hence, there is a fixed vector $e \neq 0$ for g. It is unique (up to a proportionality) if $g \notin I^{0}(m)$ and it acts in the 2 -plane e^{\perp} as the rotation by an angle $\varphi=\varphi(g)$.
(ii) For $g \in I(m)$, there is a g-invariant parallel complex structure J^{g} in X defined by the condition $\left(J^{g}\right\rangle=e^{\perp}$. It is unique (up to a signe) if $g \notin I^{0}(m)$.
(iii) Let x be a fixed point of $g \in I(m)$. In suitable J_{g}-holomorphic coordinates , the differential $d g_{x}$ is given by $\operatorname{diag}\left(e^{i \varphi_{1}}, e^{i \varphi_{2}}\right), \varphi_{1}+\varphi_{2}=\varphi(g)$.
(iv) For $v \neq 0, v \in T_{x} X$, let I_{v} be the group of isometries which preserve $x \in X$ and v. Then the map $\cup\lrcorner: E \rightarrow v^{\perp} \subset T_{x}^{*} X$, defined by the internal multiplication by v, is an isomorphism of I_{v}-modules. In particular, $I_{v} \cap I^{0}(m)=\{\mathrm{id}\}$ and for $h \in I_{v}$, the condition $h^{n} \in I^{0}(m)$ implies $h^{n}=\mathrm{id}$.

The proof of the lemma is straight forward.
PROPOSITION 2.1. Let (X, m) be a hyper-Kähler 4 -manifold.

1) For any isometry $g \in I^{0}(m), g \neq$ id, the fixed point set Fix (g) is discrete.
2) Distinct involutions from $I^{0}(m)$ have not common fixed points.
3) Suppose that each element from the quotient group $I(m) / I^{0}(m)$ has even order. Then each 2 -dimensional component of the fixed point set Fix $(g), g \in I(m)$, is contained into the fixed point set Fix (h) of the involution $h=g^{k} \in I(m)-I^{0}(m)$ where $2 k=$ order g.
4) For an involution $h \in I(m)-I^{0}(m)$, the set Fix (h) is either empty or has only 2 -dimensional components. For distinct involutions $h, h^{\prime} \in I(m)$ the sets Fix (h), Fix (h^{\prime}) have no common connected components.
5) Let $h_{1}, h_{2}, h_{3} \in I(m)-I^{0}(m)$ be distinct commuting involutions which preserve the same parallel complex structure. Then

$$
\operatorname{Fix}\left(h_{1}\right) \cap \operatorname{Fix}\left(h_{2}\right) \cap \operatorname{Fix}\left(h_{3}\right)=\emptyset
$$

Table 1.

$d(h)$	2	3	4	5	6	7	8
$\|\operatorname{Fix}(h)\|$	8	6	4	4	2	3	2

6) Suppose X is diffeomorphic to the $K 3$-surface and id $\neq h \in I^{0}(m)$. If the order $h=2,3$ or 4 , then $|\operatorname{Fix}(h)|=8,6$ or 4 respectively.

REMARK. It can be proved that for any $h \in I^{0}(m)$, the number $|\operatorname{Fix}(h)| \leq 8$ and it is defined by the order $d(h) \leq 8$ of h as it is indicates in the table 1 :

Proof. The statements 1), 3) follows from iv) and 2), 4) follows from (ii), (iii). The assertion 2) implies 5), since the action of the involutions h_{1}, h_{2}, h_{3} on the space E is identical and, hence, $h_{1} h_{2}, h_{1} h_{3} \in I^{0}(m)$. Now we prove 6). Since $h \in I^{0}(m)$ preserves the complex structure J_{0}, the J_{0}-holomorphic Lefschetz number [3] $L(h, O)$ is defined. For $K 3$-surface, we have $H^{1,0}=0, H^{0,0}=H^{2,0} \simeq \mathbb{C}$ with the trivial action of h. Hence $L(h, O)=\sum \operatorname{tr}\left(h^{*} \mid H^{0, i}\right)=2$. The holomorphic Lefschetz formula and 1) imply that Fix (h) is finire and isn't empty. Suppose that order $d(h)=2,3$ or 4. Then, by lemma 2.1. (ii) the differential $d h_{x}$ of h at any h-invariant point x is given by $d h_{x}=\operatorname{diag}(-1,-1), \operatorname{diag}\left(e^{\frac{2 \pi i}{3}}, e^{\frac{-2 x i}{3}}\right)$ or, respectively, $\operatorname{diag}(i,-i)$. The Lefschetz formula is read as:

$$
2=L(h, O)=\sum_{x \in \operatorname{Fix}(h)} \frac{1}{\operatorname{det}\left(\mathrm{id}-d h_{x}\right)}=\frac{N}{4}, \frac{N}{3} \text { or } \frac{N}{2}
$$

This proves 6).
Now we assume that X is an algebraic $K 3$-surface with complex structure J_{0} and m is the Calabi-Yau metric on X associated with a linear normal embedding

$$
\mu: X \rightarrow \mathbb{C} P^{N}=P\left(H^{0}(X, O(L))^{*}\right)
$$

where L is a very ample line bundle [3].
PROPOSITION 2.2. The group $I\left(m, \pm J_{0}\right)$ of isometries of the Calabi-Yau metric m which preserve the complex structure J_{0} up to a signe is identified with the group Aut $(\mu(X))$ of holomorphic and anti-holomorphic transformations of $\mathbb{C} P^{N}$ which preserve $\mu(X)$:

$$
I\left(m, \pm J_{0}\right)=\left.\operatorname{Aut}(\mu(X))\right|_{\mu(X)}
$$

Proof. Denote by η the Kähler form of the Fubini-Study metric κ on $\mathbb{C} P^{N}$. The cohomology class $[\eta$] is dual to the homology class of hyperplane section. Let g be a holomorphic (hence, projective) transformation of $\mathbb{C} P^{N}$ preserved $\mu(X)$. Then it preserves the cohomology class $[\eta \mid \mu(X)$]. Hence, by Yau theorem, it preserves the Calabi-Yau metric m associated with the embedding as the unique Ricci-flat Kähler metric m with Kähler form $m \circ J_{0} \in[\eta \mid \mu(X)]$. The similar argument applies to the case when g is antiholomorphic transformation and, hence, $g_{*} J_{0}=-J_{0},\left[g^{*} \eta\right]=$ $-[\eta]$.

Now we prove the converse assertion. Note that the line bundle L is the restriction on $\mu(X)$ of the hyperplane bundle $[H]$ over $\mathbb{C} P^{N}$ [3]. Hence, the Chern class $c_{1}(L)$ is equal to $[\eta \mid \mu(X)]$. Since X is simply connected, there is only one (up to an isomorphism) line bundle with the Chern class $[\eta \mid \mu(X)]$. Let $g \in I\left(m, \pm J_{0}\right)$. For clarity, we assume that g preserves the complex structure J_{0}. Then g preserves the Kähler form $m \circ J_{0}$ and, hence, the cohomology class $\left[m \circ J_{0}\right]=c_{1}(L)$. This implies that the line bundle $g^{*} L$ is isomorphic to L. Hence, g is covered by an automorphism \hat{g} of the bundle L. Since any fiber preserving automorphism of L is the multiplication by a constant, the automorphism \hat{g} defines up to a constant factor preserves the projective embedding $\mu: X \rightarrow P\left(H^{0}(X, O(L))^{*}\right)=\mathbb{C} P^{N}$. This proves the proposition.

3. THE LATTICE Γ OF INTEGER PARALLEL 2 -FORMS ON THE FERMAT SURFACE

Let (F, m) be the Fermat manifold. We shall denote by J_{0} the standard complex structure on F and by $\epsilon_{0}=m \circ J_{0}$ the Kähler form of the metric m. To calculate the isometry group $I(m)$ we need the explicit description of the lattice Γ of integer parallel 2 -forms on the hyper-Kähler manifold (F, m). It derives from the following fundamental for us result of I.I. Piatetskii-Shapiro and I.R. Shafarevitch.

THEOREM 3.1. ([1], §8). Let $S \subset H_{2}(F, \mathbf{R})$ be the lattice of complex algebraic cycles on the Fermat surface F and $T \subset H^{2}(F, \mathbb{Z})$ is the lattice of all integer cohomology classes annulated by cycles from S.

1) The lattice T has a basis $\epsilon_{1}, \epsilon_{2}$ with the scalar products $\epsilon_{1} \cdot \epsilon_{2}=0$, $\epsilon_{1}^{2}=\epsilon_{2}^{2}=8$. In particular, F is a singular Kummer surface.
2) Discriminante of the lattice S is equal to 64 .

Using this result, we prove

THEOREM 3.2. The lattice Γ of integerparallel 2 -forms on the hyper-Kählermanifold (F, m) has an orthogonal basis $\epsilon_{0}, \epsilon_{1}, \epsilon_{2}$ with $\epsilon_{0}^{2}=4, \epsilon_{1}^{2}=\epsilon_{2}^{2}=8$. In particular, for any $\gamma \in \Gamma, \gamma^{2} \equiv 0(\bmod 4)$.

Proof. The lattice T is naturally identified with the sublattice T^{\prime} of the lattice Γ which consists of parallel 2 -form orthogonal to the Kähler form ϵ_{0}. Therefore Γ contains the sublattice $\Gamma^{\prime}=\mathbb{Z} \epsilon_{0} \oplus T^{\prime}$ with the orthogonal basis $\epsilon_{0}, \epsilon_{1}, \epsilon_{2}$, where $\epsilon_{0}^{2}=\operatorname{deg} F=$ $4, \epsilon_{1}^{2}=\epsilon_{2}^{2}=8$.

We need only to prove that $\Gamma=\Gamma^{\prime}$. This follows from the facts:

1) $T^{\prime}=\Gamma \cap\left(T^{\prime} \otimes \mathbb{Q}\right)$ (theorem 3.1)
2) the lattice Γ is even and integer as a sublattice of the even lattice $H^{2}(F, \mathbb{Z})$ $\simeq 3\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right) \oplus 2\left(-E_{8}\right)$ [2].

Indeed, if we suppose that $\Gamma \neq \Gamma^{\prime}$ then there is an element $\gamma \in \Gamma$ of the form $\gamma=\alpha_{0} \epsilon_{0}+\alpha_{1} \epsilon_{1}+\alpha_{2} \epsilon_{2}, 0<\alpha_{0}<1,0 \leq \alpha_{i}<1, i=1,2$. The conditions $\boldsymbol{\gamma}^{2} \in 2 \mathbf{Z}, \boldsymbol{\gamma} \cdot \epsilon_{j} \in \mathbf{Z}, j=0,1,2$ imply $4 \alpha_{0} \in \mathbf{Z}, 8 \alpha_{i} \in \mathbf{Z}, i=1,2$, and elementary arithmetic arguments lead to the contradiction.

4. COMPUTATION OF THE GROUP OF ISOMETRIES

The result of $\S 3$ imply the following.
THEOREM 4.1. Let (F, m) be the Fermat manifold. Then the group of isometries $I(m)$ is identified with the group of all holomorphic and antiholomorphic transformation of $\mathbb{C} P^{3}$ which preserved the surface F.

Proof. An isometry $g \in I(m)$ preserves the lattice Γ. Hence, it preserves the pair of vectors $\pm \epsilon_{0} \in \Gamma$ as the only vectors with the scalar square 4. This shows that $g_{*} J_{0}= \pm J_{0}$. Now the theorem follows immediately from the proposition 2.2.

Denote by τ the anti-holomorphic transformation of $\mathbb{C} P^{3}$ (and also its restriction on F) which is induced by the complex conjugation of the homogeneous coordinates. By theorem 4.1., $I(m)=$ Aut $^{+}(F) \cup \tau \circ$ Aut ${ }^{+}(F)=$ Aut (F). Hence, the computation of the isometry group $I(m)$ reduces to the computation of the group Aut ${ }^{+}(F)$ of all projective transformations of $\mathbb{C} P^{3}$ which preserve F. We prove more general result.

Denote by $F_{d, n}$ the Fermat hypersurface in $\mathbb{C} P^{n-1}$ defined by

$$
x_{0}^{d}+\ldots+x_{n-1}^{d}=0
$$

PROPOSITION 4.1. The group Aut ${ }^{+}\left(F_{d, n}\right)$ of all projective transformations of $\mathbb{C} P^{n-1}$ which preserve $F_{d, n}$ is the semi-direct product Aut ${ }^{+}\left(F_{d, n}\right)=\left(\mathbb{Z}_{d}\right)^{n-1} \cdot S_{n}$ of the group S_{n} of all permutations of the coordinates and the group $\left(\mathbb{Z}_{d}\right)^{n-1}=\left\{\operatorname{diag}\left(1, \epsilon_{1}, \ldots\right.\right.$, ϵ_{n-1}), $\left.\epsilon_{i}^{n}=1\right\}$ (We describe a projective transformation g by the matrix A of the corresponding linear transformation \tilde{g} of \mathbb{C}^{n} defined up to a scale factor).

We prove the proposition by the induction on n. For $n=2$, the proof is straight forward. Let now $n>2$ and $g \in$ Aut $^{+}\left(F_{d, n}\right)=G$. Denote by $A=\left(A_{i j}\right)$ the matrix which represents g and preserves the function $f=x_{0}^{d}+\ldots+x_{n-1}^{d}$. Then

$$
\begin{equation*}
\sum u_{i}^{d}=\sum x_{i}^{d}, \tag{4.1}
\end{equation*}
$$

where $u_{i}=\sum x_{j} A_{j i}$.
Multiplying g by some element from G, we may assume that $A_{n-1, n-1} \neq 1$ and $u_{n-1} \notin \mathbb{C} x_{n-1}$. These imply that
(i) the linear functions x_{0}, \ldots, x_{n-2} on \mathbb{C}^{n} are linear independent modulo $v=$ $u_{n-1}-x_{n-1}$ and
(ii) $x_{n-1} \neq 0(\bmod v)$.

The identity (4.1) implies

$$
\sum_{i \leq n-2} u_{i}^{d}-\sum_{i \leq n-2} x_{i}^{d}=x_{n-1}^{d}-u_{n-1}^{d} \equiv O(\bmod v)
$$

By (i), we may consider x_{0}, \ldots, x_{n-2} as the coordinates on the subspace $v=0$. Using inductive assumption, we can write

$$
u_{i} \equiv \epsilon_{a(i)} x_{s(i)}(\bmod v),
$$

where s is some permutation and $\epsilon_{j}^{d}=1$. Multiplying g by some element from G, we may assume that

$$
u_{i}=x_{i}+\lambda_{i} v, \quad i \leq n-2 ; \quad u_{n-1}=x_{n-1}+v .
$$

Then we have the identity

$$
0 \equiv \frac{1}{v d}\left[\sum_{i \leq n-1} u_{i}^{d}-\sum_{i \leq n-1} x_{i}^{d}\right] \equiv x_{n-1}^{d-1}+\sum_{i \leq n-2} \lambda_{i} x_{i}^{d-1}(\bmod v) .
$$

The conditions (i), (ii) imply that all λ_{i} except one vanish. This reduce the assertion to the case $n=2$.

Retuming to the Fermat surface $F=F_{4,4}$, we fixed the following notations: $i_{\rho}=$ $\operatorname{diag}\left(\underset{1}{1} \frac{1}{2}, \ldots,{ }_{p 1}^{1}, i, 1, \ldots, 1\right), i=\sqrt{-1}, \sigma_{p}=i_{p}^{2}, \alpha_{p q}$ is the transposition of the homogeneous coordinates x_{p} and $x_{q}(p, q=0, \ldots, 3)$.

COROLLARY 4.1. Let (F, m) be the Fermat manifold. Then $I(m)=G \cap \tau G$, where $G=\left(\mathbb{Z}_{4}\right)^{3} \cdot S_{4}$ is the group of all holomorphic transformations of F generated by the transformations $i_{p}, \alpha_{p q}(p, q=0, \ldots, 3)$.

We notice that any projective transformation g which preserve F can be represent by an linear transformation \tilde{g} of \mathbb{C}^{4} which preserves the function $f=x_{0}^{4}+\ldots x_{3}^{4}$. The transformation \tilde{g} is defined up to a factor $\epsilon \in \mathbb{C}, \epsilon^{4}=1$. Hence, we have the homomorphism

$$
\operatorname{det}: G \rightarrow \mathbb{C}^{*}, \quad g \mapsto|g|=\operatorname{det} \tilde{g} .
$$

Corollary 4.1. implies that $\operatorname{det}(G)=\mathbb{Z}_{4}=\left\{\epsilon, \epsilon^{4}=1\right\}$.
We set

$$
G^{0}=\{g \in G,|g|=1\}, \quad H=\{g \in G,|g|= \pm 1\}
$$

We have a chain of the normal subgroups

$$
G^{0} \subset H \subset G \subset I(m)
$$

LEMMA 4.1. Let $\omega \neq 0$ be a holomorphic 2 -form on F. Then the action of $g \in G$ on ω is given by

$$
g^{*} \omega=|g| \omega .
$$

In particular, $G^{0}=I^{0}(m)$.

Proof. To construct ω explicitely, we define the holomorphic 3-form γ of GelfandLerey on the surface $S=\left\{f \equiv x_{0}^{4}+\ldots+x_{3}^{4}=0\right\} \subset \mathbb{C}^{4}$ by the relation

$$
d f \wedge \gamma=d^{4} x
$$

Contracting γ with the radial vector fields $E=\sum x_{i} \frac{\partial}{\partial x_{i}}$ we receive 2 -form $\left.\tilde{\omega}=E\right\rfloor \gamma$ on S. It is E-invariant $(E \cdot \tilde{\omega}=0)$ and E-horizontal $(E J \tilde{\omega}=0)$. Hence, it defines a holomorphic 2 -form ω on $F=P S$. For $g \in G$, we have $\tilde{g}^{*}\left(d^{4} x\right)=|g| d^{4} x, \tilde{g}^{*} f=$ $f, \tilde{g}_{*} E=E$. These imply the lemma.

COROLLARY 4.2.

1) The group $\frac{I(m)}{I^{0}(m)}=\frac{G U^{G} G}{G^{0}}$ is isomorphic to the group of all orientation preserving automorphisms of the lattice Γ, that is to the dihedral group D_{4}. All elements from $\frac{I(m)}{I^{0}(m)}=D_{4}$ have even orders.
2) There are exactly 10 points on the Riemannian sphere $\mathbb{C} P^{1}$ of the parallel complex structures J_{t} (see § 1) which have non-trivial stabilizer in the group $\frac{I(m)}{I^{\circ}(m)}$. They are decomposed into 3 orbits under $\frac{I(m)}{I^{0}(m)}$:
3) $t=0, \infty$
4) $t, t^{4}=1$,
$t, t^{4}=-1$

The corresponding subspace of E is generated by the following lattice:

1) $\mathbb{Z} \epsilon_{I} \oplus \mathbb{Z} \epsilon_{2}$ for $\left.t=0,2\right) \quad \mathbb{Z} \epsilon_{0} \oplus \mathbb{Z} \epsilon_{1}$ for $\left.t=1,3\right) \quad \mathbb{Z} \epsilon_{0} \oplus \mathbb{Z}\left(\epsilon_{1}+\epsilon_{2}\right)$ for $t=\chi:=\frac{i+1}{\sqrt{2}}$.

Moreover, $J_{\infty}=-J_{0}, J_{-t}=-J_{t}$ for $t, t^{4}= \pm 1$.

The corollary 4.2. 1) and the proposition 2.1. 3) imply that the determination of 2 -dimensional fixed point set Fix $(g), g \in I(m)$ reduces to the case when g is an involution.

In the next paragraph we shall determine such sets which are projective lines.

5. PROJECTIVE LINES ON THE FERMAT SURFACE

We determine all projective lines on the Fermat surface F and prove that they are totally geodesic submanifolds with respect to the Calabi-Yau metric m. Let $\Delta=\left\{\left(x_{0}\right.\right.$: $\left.\left.x_{1}: x_{2}: x_{3}\right), x_{0} x_{1} x_{2} x_{3}=0\right\}$ be the coordinate tetrahedron in $\mathbb{C} P^{3}$. Let $\Delta_{i}^{\prime}=\left\{x_{0}=\right.$ $\left.x_{i}=0\right\}$ and $\Delta_{i}(i=1,2,3)$ are the pair of its opposite edges.

The intersection of each edge Δ_{i} (respectively Δ_{i}^{\prime}) with the generalized Fermat surface $F^{d}=\left\{x_{0}^{d}+\ldots+x_{3}^{d}=0\right\}$ of the degree d consists of the d points $P(i, a)$ (respectively $P^{\prime}(i, a)$) with the homogencous coordinates

$$
\left(x_{0}: x_{i}: x_{j}: x_{k}\right)= \begin{cases}\left(\chi: \epsilon^{a}: 0: 0\right) & \text { for } P(i, a) \\ \left(0: 0: \epsilon^{b}: \chi\right) & \text { for } P^{\prime}(i, b) .\end{cases}
$$

Here (i, j, k) is a cyclic permutation of the indices $(1,2,3), \chi^{2}=\epsilon, \epsilon=\sqrt[d]{1}$ is a fixed primitive root of the degree d from the unit.

Denote by $l(i, a, b)$ the projective line which passes trough the points $P(i, a)$ and $P^{\prime}(i, b)$. Obviously, $l(i, a, b) \subset F^{d}$.

PROPOSITION 5.1.

1) All projective lines on the Fermat surface $F^{d} \subset \mathbb{C} P^{3}$ are exhausted by the lines $l(i, a, b),(i, a, b) \in \mathbf{Z}_{3} \times \mathbb{Z}_{d} \times \mathbb{Z}_{d}, d>2$.
2) Two distinct lines $l(i, a, b), l\left(i^{\prime}, a^{\prime}, b^{\prime}\right)$ intersect iff one of the following conditions is satisfied:
3) $i=i^{\prime}-1, \quad a+b=a^{\prime}-b^{\prime}+1$
4) $i=i^{\prime} 1, \quad a=a^{\prime}$ or $b=b^{\prime}$
5) $i=i^{\prime}+1, \quad a-b+1=a^{\prime}+b^{\prime}$

To prove 1) it suffices to check that a line $l \subset F^{d}$ intersectes two opposite edges of the tetrahedron Δ. In the opposite case, the line l intersect two faces on Δ. We may assume that the points of the intersections P, Q have the coordinates ($1: p: q: 0$) and $(0: r: s: 1), p q r s \neq 0$.

But the line $l=(P Q)$ can't be contained into F^{d} since the polynomial

$$
f(t)=1+(p+r t)^{d}+(q+s t)^{d}+t^{d}
$$

isn't identically zero. This contradiction proves 1). The proof of 2) is straighforward.
Thus we have 48 lines on the Fermat quartic surface $F=F^{4}$. They are numerated by elements of the group $\mathbb{Z}_{3} \times \mathbf{Z}_{4} \times \mathbf{Z}_{4}$. We consider some properties of these lines.

Define an equivalence relation on the set of lines on F by the formula:

$$
l(i, a, b) \sim l\left(i^{\prime}, a^{\prime}, b^{\prime}\right) \Leftrightarrow i=i^{\prime}, a+b=a^{\prime}+b^{\prime}, a-b=a^{\prime}-b^{\prime} .
$$

PROPOSITION 5.2. Each equivalence class of lines consists of two non-intersecting lines l and l^{\prime}. They compose an orbit of the normal subgroup $\left\{\operatorname{diag}\left(1, \epsilon_{1}, \epsilon_{2}, \epsilon_{1} \cdot \epsilon_{2}\right), \epsilon_{i}^{2}=\right.$ 1\} of the group $I(m)$ acted on the set of lines. The set $l \cup l^{\prime}$ is the fixed point set of an involution from the group $H \subset I(m)$ (see §4). The group H acts transitively on the set of the lines.

For example, let $a+b=2 p, a-b=2 q, p, q \in\{0,1\} \subset \mathbb{Z}_{4}$. Then the lines $l(0, a, b), l(0, a+2, b+2)$ are equivalente and they compose the fixed point set of the involution

$$
\beta^{p, q}=\left(\sigma_{1} \sigma_{2}\right)^{p+1}\left(\sigma_{1} \sigma_{3}\right)^{q} \iota_{1} \iota_{2} \alpha_{01} \alpha_{23}
$$

COROLLARY 5.1. Each projective line on the Fermat surface F is 2 -dimensional totally geodesic submanifold of the Fermat manifold (F, m).

Let $Q=\left\{y \in \mathbb{C} P^{3}, y_{0}^{2}+\ldots+y_{3}^{2}=0\right\}$ be the quadric. We identify Q with $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$ such that the fibres of the projections π_{1}, π_{2} onto the factors compose two families of the straight generatrices of Q. The mapping $q: \mathbb{C} P^{\mathbf{3}} \rightarrow \mathbb{C} P^{3},\left(x_{\mathfrak{i}}\right) \rightarrow$ (x_{j}^{2}) map F onto Q. The mappings $\pi_{i} \circ q: F \rightarrow \mathbb{C} P^{1}, i=1,2$ define two pencils $\mathcal{E}_{1}, \mathcal{E}_{2}$ of elliptic curves of the degree 4 in F. Projective lines of F are mapped by q onto straight generatrices of Q and, hence, are contained into singular fibres of the pencils.

PROPOSITION 5.3. The lines $l(i, a, b)$ and $l\left(i^{\prime}, a^{\prime}, b^{\prime}\right)$ are contained into one fibre of the elliptic pencils iff they are equivalent under the action of the normal subgroup $\left\{\operatorname{diag}\left(1, \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right), \epsilon_{i}^{2}=1\right\} \subset I(m)$ acted on the set of the lines, i.e. iff

$$
i=i^{\prime}, \quad a \equiv a^{\prime}(\bmod 2), \quad b \equiv b^{\prime}(\bmod 2)
$$

COROLLARY 5.2. 48 lines on F are decomposed into 12 classes. Each class consists of 4 lines, which compose an singular fibre of one of the elliptic pencil. Lines from different fibres of the one pencil do not intersect.

Six singular fibres of each elliptic pencil are situated over points of the base $\mathbb{C} P^{1} \approx$ S^{2} which identify (up to a projective transformation) with two vertices $0, \infty, \pm 1, \pm i$ of the octahedron (see [8], ch. I, § 11.)

PROPOSITION 5.4.

1) The self-intersection number of a projective line on the Fermat surface F is equal 2. Two distinct lines isn't homologous.
2) Let f_{1}, \ldots, f_{48} be the cohomology classes dual to the classes of the projective lines and e_{0} is the cohomology class of the Kähler form $m \circ J_{0}$. Then

$$
e_{0}=\frac{1}{12}\left(f_{1}+\ldots+f_{48}\right) .
$$

3) The 20 -dimensional cohomology space $H^{1,1}(F, \mathbb{C})$ is generated by the classes f_{1}, \ldots, f_{48}.

Proof. 1) Since the surface F has trivial canonical bundle K_{F}, the normal bundle N_{C} of a smooth curve C in F coincides with the canonical bundle K_{C}, that is, the bundle of holomorphic 1 -forms. Hence, the self-intersection number

$$
C \cdot C=\operatorname{deg} N_{C}=-\chi(C)
$$

where $\chi(C)$ is the Euler characteristic. Suppose that the curve C is rational. Then $C \cdot C=-\chi(C)=-2$ and the bundle K_{C} has only zero section. The second assertion shows that the curve C is not deformable. Since the manifold F is simply connected, this implies that distinct projective lines isn't cohomologous.
2) Let $M_{i, a}$ be the plane contained the point $P(i, a) \in \Delta_{i} \cap F$ and the opposite edge Δ_{i}^{\prime} of the coordinate tetrahedron. The set $F \cap M_{i, a}$ consists of four projective lines. Hence, the union of these lines is linear equivalent to the class of hyperplane section which is dual to e_{0}. Averaging on 12 such planes, we prove 2).
3) Let f_{1}, \ldots, f_{24} be the cohomology classes which are defined by the lines from singular fibers of the elliptic pencil \mathcal{E}_{1}. These classes generate the hyperplane $a^{\perp} \subset$ $H^{1,1}(F, \mathbb{C})$ orthogonal to a general fibre a of the pencil \mathcal{E}_{1} [1], §8. Let $l \subset F$ a line which is contained into a fibre of the pencil \mathcal{E}_{2}. Then l isn't contained into the fibres of \mathcal{E}_{1} and associated cohomology class $f \notin a^{\perp}$. Hence, the classes f_{1}, \ldots, f_{24}, f generate the space $H^{1,1}(F, \mathbb{C})$. This proves 3).

It is known that there are 27 projective lines on a cubic, in particular, on the Fermat cubic F^{3}. They generat the Picard lattice [3]. Similar result which we state without proof is true for the Fermat surface $F=F^{4}$.

THEOREM. The lattice S of complex algebraic cycles on the Fermat surface F is gencrated by the classes of 48 projective lines.

6. GROUP CHARACTERIZATION OF THE DISTINGUISHED COMPLEX STRUCTURES

Now we construct the involutions $\rho \in I(m)$ such that the homology class of Fix (ρ) $\subset F$ is dual to the harmonic 2 -form $\epsilon_{2}=\sqrt{2} m \circ J_{1}$, (see $\S 3,4$). This implies the characterizazion of the distinguished complex structures on the Fermat manifold (F, m) in terms of the stabilizers in the group $I(m)$. This results are used in § 7 to study the fixed points set of involutions.

Denote by $A \subset P G L_{4}(\mathbb{C})$ the finite group generated by the projective transformation

$$
\sigma_{j k}=\sigma_{0} \circ \sigma_{i}, \quad \alpha_{i}=\alpha_{0 i} \circ \alpha_{j k}
$$

where (i, j, k) are cyclic permutations of $(1,2,3)$ and $\sigma_{i}, \alpha_{j k}$ are defined in $\S 4$. Then $A \approx\left(\mathbb{Z}_{2}\right)^{4}$. Let B the group generated by A and the complex conjugation τ. We set

$$
\rho_{i}=\alpha_{0 i} \circ \alpha_{j k} \circ T, \quad \rho_{i+3}=\sigma_{0} \sigma_{i} \rho_{i}, \quad i=1,2,3 .
$$

The involutions $\rho_{i}(i=1, \ldots, 6)$ generate the group $B \approx\left(\mathbb{Z}_{2}\right)^{5}$ and $\rho_{1} \circ \rho_{2} \circ \ldots \circ \rho_{6}=$ id . Notice that B preserves the Fermat surface F. Hence, we may identify B with a subgraup of $I(m)$. Then $A=B \cap I^{0}(m)$.

THEOREM6:1. Foreach $b \in B$, the fixed points set Fix (b) of b into F and the Euler charaeteristic $\chi($ Fix (b)) are described in the following table:

Table 2.

$b \in B$	Fix b	$\chi($ Fix $b)$	numbers of elements b
id	F	24	1
$A-\{$ id $\}$	finite set	8	15
ρ_{j}	connected 2 dimensional submanifold	-8	6
other	\emptyset	0	10

Proof. It is well known [4] that for $K 3$ surface $F \chi(F)=24$. Since $A \subset I^{0}(m)$, the second row follows from proposition 2.1.6) To establish last row we check straighforward that the involutions $\tau, \sigma_{j k} \tau=\left(\iota_{j} \iota_{k}\right) \tau\left(\iota_{j} \iota_{k}\right)^{-1}, \sigma_{i j} \alpha_{i} \tau$ have not fixed points in F. Now we prove the third row.

Set

$$
D=\left\{\operatorname{diag}\left(1, \delta_{1}, \delta_{1}, \delta_{3}\right), \delta_{i}^{4}=1\right\} \simeq\left(\mathbb{Z}_{4}\right)^{3}
$$

Then D is a normal subgroup of $I(m)$.
LEMMA 6.1. Let $h \in \tau G$ be an antiholomorphic involution and $Z_{D}(h)$ is the centralizer of h into D. Then
(i) the group $Z_{D}(h)$ acts transitively on the set of the connected components of Fix (h). Hence, the components have equal Euler characteristic.
(ii) If $\chi=\chi(\operatorname{Fix}(h))>0$ then $\operatorname{Fix}(h)$ is the union of $\chi / 2$ spheres. If $\chi=0$, then Fix (h) is the union of tori. If $\chi<0$, then Fix (h) is a connected set.

Proof. First, we show that (i) implies (ii).

Let $\operatorname{Fix}(h)=C_{1} \cup \ldots \cup C_{k}, C_{j} \cap C_{j}=\emptyset, i \neq j$ be the decomposition of Fix (h) into the connected components. By (i) we have $\chi\left(C_{1}\right)=\ldots=\chi\left(C_{k}\right)=\frac{1}{k} \chi$. Since J^{h}-complex submanifolds $C_{j}, j=l, \ldots, k$ are oriented, (where J^{h} is the h invariant complex structure) we have $\chi\left(C_{j}\right) \in\{2,0,-2,-4, \ldots\}$. Hence, if $\chi>0$ then $X\left(C_{j}\right)=2, C_{j} \approx S^{2}$. If $\chi=0$, then $C_{j} \approx T^{2}$. Let $\chi<0$. Note that C_{j} are smooth J^{h}-complex curve. Using the adjunction formula for a smooth curve on a surface with the trivial canonical bundle, we have $C_{j} \cdot C_{j}=-\chi\left(C_{j}\right)=-\frac{1}{k} \chi>0$. Hence, the intersection form $\left(C_{j} \cdot C_{j}\right)=\operatorname{diag}\left(-\frac{x}{k}, \ldots,-\frac{\chi}{k}\right)$ is positively defined. On the other hand, the intersection form of complex algebraic cycles on a compact complex surface has signature $(+,-, \ldots,-)$ [3]. So $k=1$ and $\operatorname{Fix}(h)=C_{1}$ is connected.

To prove (i), we define the ramified covering with the group $D \pi: \mathbb{C} P^{3} \rightarrow \mathbb{C} P^{3}$ by the formula $y_{i}=x_{i}^{4}(0 \leq i \leq 3)$. It projectes the Fermat surface $F \subset \mathbb{C} P^{3}$ onto the plane $\mathbb{C} P^{2}=\left\{\sum y_{i}=0\right\}$. Since D is a normal subgroup, the involution h defines some involution $\bar{h}=h D=D h$ on $\mathbb{C} P^{2}$. The assertion (i) is equivalent to the following statement:
(i') The map π projects any connected component of Fix (h) onto π (Fix (h)).
The projection $\pi($ Fix $(h))$ can be ramified only over points from the set π (Fix $(h))$ $\cap \Delta \subset \operatorname{Fix}(\bar{h}) \cap \Delta$, where $\Delta=\left\{y_{0} y_{1} y_{2} y_{3}=0\right\}$ is the coordinate tetrahedron. It can be checked that $\bar{h}=\tau, \alpha_{23} \circ \tau$ or $\alpha_{01} \circ \alpha_{23} \circ \tau$ (see §7) and Fix $(\bar{h}) \approx \mathbf{R} P^{2}$. We consider only the case $h=\rho_{1}=\alpha_{01} \circ \alpha_{23} \circ \tau$. Then $\pi\left(\operatorname{Fix}\left(\rho_{1}\right)\right)=\operatorname{Fix}\left(\bar{\rho}_{1}\right) \approx \mathbf{R} P^{2}$,

$$
\operatorname{Fix}\left(\bar{\rho}_{1}\right) \cap \Delta=\left\{P_{1}=(1:(-1): 0: 0), P_{2}=(0: 0: 1:(-1))\right\}
$$

This implies i^{\prime}) for $h=\rho_{1}$. For other case, the proof is similar. Of cause we use that the pre-image of a regular point $x \in \pi(\operatorname{Fix}(h)), h \in \tau G$, is an orbit of $Z_{D}(h)$. It is easy to prove.

Now we compute $\chi\left(\right.$ Fix $\left.\rho_{1}\right)$. The pre-image $\pi^{-1}\left(P_{i}\right)$ of each ramified point $P_{i}, i=1,2$ consists of 4 points which are invariant by ρ_{1}. The simple calculation gives

$$
Z_{D}\left(\rho_{1}\right)=\left\{\operatorname{diag}\left(1, \delta_{1}, \delta_{2}, \delta_{3}\right), \delta_{1}=\delta_{2} \cdot \delta_{3}\right\} \simeq\left(\mathbf{Z}_{4}\right)^{2}
$$

Let v, e, f be the number of vertices, edges and faces of a triangulation T of $\pi\left(\right.$ Fix $\left.\left(\rho_{1}\right)\right)$ $\simeq \mathbf{R} P^{2}$, which has the points P_{1}, P_{2} as vertices. Then $v-e+f=\chi\left(\mathbb{R} P^{2}\right)=1$.

For the corresponding triangulation $T^{\prime}=\pi^{-1}(T)$ of $\operatorname{Fix}\left(\rho_{1}\right)$ we have

$$
\begin{aligned}
& v^{\prime}=16 v-(16-4) \cdot 2, e^{\prime}=16 e, f^{\prime}=16 f \\
& \chi\left(\operatorname{Fix}\left(\rho_{1}\right)\right)=v^{\prime}-e^{\prime}+f^{\prime}=-8
\end{aligned}
$$

Now the lemma 6.1 (ii) shows that Fix (h) is a connected surface of genus 5. For the other involutions ρ_{i}, the calculations are similar. This proves the theorem.

REMARK. The theorem 6.1 remain true if the Fermat surface F is replaced by a quartic X from the connected component $Q \ni F$ on the set of B-invariant smooth quartic in $\mathbb{C} P^{3}$. These quartic are defined by

$$
\begin{aligned}
& q_{0} \sum_{i=0}^{3} x_{i}^{4}+\operatorname{cycl} q_{i}\left(x_{0}^{2} x_{i}^{2}+x_{j}^{2} x_{k}^{2}\right)+q_{4} x_{0} x_{1} x_{2} x_{3}=0 \\
& q=\left(q_{0}: q_{1}: q_{2}: q_{3}: q_{4}\right) \in \mathbf{R} P^{4}
\end{aligned}
$$

PROPOSITION 6.1. For any B-invariant quartic $X \in Q$, the space $H_{2}(X, \mathbb{C})^{B}$ of B-invariant elements from $H_{2}(X, \mathbb{C})$ is 1 -dimensional.

Proof. Set $H_{i}=H_{i}(X, \mathbb{C}), H_{i}^{B}=H_{i}(X, \mathbb{C})^{B}$. Since $H_{0}=H_{0}^{B} \simeq H_{4}=H_{4}^{B} \simeq$ C , $H_{1}=H_{3}=0$, it is sufficient to prove that $k:=\operatorname{dim} H_{*}^{B}=3$. It well known that

$$
k=|B|^{-1} \sum_{b \in B} t(b)
$$

where $t(b)$ is the trace of the induced operator $b_{*} \in$ End $H_{*}(X, \mathbb{C})$.
We have

$$
\begin{aligned}
t(b) & =\left.\left.\operatorname{tr} b_{*}\right|_{H_{*}} \operatorname{tr} b_{*}\right|_{H_{0}}+\left.\operatorname{tr} b_{*}\right|_{H_{2}}+\left.\operatorname{tr} b_{*}\right|_{H_{4}}= \\
& =\left.\sum(-1)^{i} \operatorname{tr} b_{*}\right|_{H_{i}}=L(b)
\end{aligned}
$$

where $L(b)$ is the Lefschetz number. By the known formula [6], $L(b)=\chi(\operatorname{Fix}(b))$. Using the results from the table 2 , now we can calculate k as follows:

$$
\begin{aligned}
k & =|B|^{-1} \sum_{b \in B} t(b)=2^{-5} \sum_{b \in B} \chi(\operatorname{Fix}(b))= \\
& =2^{-5}(24+8 \cdot 15-8 \cdot 6)=3 .
\end{aligned}
$$

THEOREM 6.2. Let X be a quartic from Q and m is the Calabi-Yau metric on X associated with the embedding $X \subset \mathbb{C} P^{3}$. Then (i) there is (unique up to a signe) B-invariant parallel complex structure J on X.
(ii) The J-complex curves $C_{j}=\operatorname{Fix}\left(\rho_{j}\right), j=1, \ldots, 6$ are mutually homologous and are dual to an auto-dual parallel 2 -form γ with $\gamma^{2}=8$.

Proof. (i) follows from the relation $\frac{B}{B \cap I^{0}(m)} \simeq \mathbb{Z}_{2}$ and the proposition 2.1. To prove (ii), we remark that the self-intersection number $C \cdot C$ of a smooth complex curve C on $K 3$-surface equals up to sign to the Euler characteristic $-\chi(C)$. In particular, for J-complex curves C_{j}, we have

$$
C_{j} \cdot C_{j}=\chi\left(\operatorname{Fix}\left(\rho_{j}\right)\right)=8
$$

By proposition 6.1., the space of B-invariant element $H_{2}(X, \mathbb{C})^{B}$ is 1 -dimensional. Hence, it is dual to the 1 -dimensional subspace of $H^{2}(X, \mathbb{C})$ generated by the autodual Kähler 2 -form $m \circ J$. Since the group $B \approx\left(\mathbf{Z}_{2}\right)^{5}$ is commutative and preserves J, it preserves also the fixed points set $C_{j}=\operatorname{Fix}\left(\rho_{j}\right)$ and the orientation on C_{j}. This
means that the homology class $\left[C_{j}\right.$] is B-invariant and, hence, it does not depend on $j=1, \ldots, 6$. This proves (ii).

Retuming to the Fermat manifold (F, m), we have

COROLLARY. Let $\tau \in I(m)$ be the involution of F defined by the complex conjugation. Then there is a τ-invariant integer parallel 2 -form $\gamma \in \Gamma$ with $\gamma^{2}=8$. Under the notations of § 3,4 one may assume that

$$
\gamma=\epsilon_{2}=\sqrt{2} m \circ J_{1} .
$$

Proof. By theorem 6.2, there is an integer parallel B-invariant (and, hence, τ-invariant) 2 -form γ with $\gamma^{2}=8$. By theorem 3.2 , the only integer parallel 2 -form with square 8 are $\pm \epsilon_{1}, \pm \epsilon_{2}$. The isometry group $I(m)$ permutes these 2 -forms (see §4). Hence, we may assume that $\gamma=\epsilon_{2}$. According to $\S 4$, the associated with ϵ_{2} parallel complex structure is $J_{1},\left\langle J_{1}\right\rangle=\epsilon_{2}^{1}$. More precisely, we have $\epsilon_{2}=\sqrt{2} m \circ J_{1}$. Indeed, for any parallel complex structure J, we have

$$
(m \circ J)^{2}=\left(m \circ J_{0}\right)^{2}=\operatorname{vol} F=4, \epsilon_{2}^{2}=8
$$

Under the identification from the corollary, we have

PROPOSITION 6.2. 1) Let $g \in G=I\left(m, J_{0}\right)$. Then $g \tau$ preserves the complex structure $J_{t}, t^{8}=1$, if $|g|=t^{2}$. In particular, $g \tau$ preserves J_{1} if $|g|=1$ and $g \tau$ preserves J_{χ} if $|g|=i$.
2) $\quad I\left(m, J_{1}\right)=I^{0}(m) \lambda\{1, \tau\}, I\left(m, J_{\chi}\right)=I^{0}(m) \lambda\left\{1, \iota_{0} \tau\right\}$.
3) The subgroups of $I(m)$, which preserve J_{t} up to a signe, are

$$
\begin{aligned}
& I\left(m, \pm J_{0}\right)=I(m), \quad I\left(m, \pm J_{1}\right)=H \lambda\{1, \tau\} \\
& I\left(m, \pm J_{x}\right)=H \lambda\left\{1, \iota_{0} \tau\right\}
\end{aligned}
$$

Proof. By results of $\S 4$, the group $I(m)=G \cup \tau G$ acts on the space $E=\mathbf{R} \epsilon_{0}+$ $\mathbf{R} \epsilon_{1}+\mathbf{R} \epsilon_{2}$ as the dihedral group D_{4}. More precisely, in the basis $\epsilon_{0}=m \circ J_{0}, \epsilon_{1}=$ $-\sqrt{2} m \circ J_{i}, \epsilon_{2}=\sqrt{2} m \circ J_{1}$ we have $\left.\tau\right|_{E}=\operatorname{diag}(-1,-1,1) ;\left.g\right|_{E}=\operatorname{diag}(1,|g|)$ for $g \in G$ where $|g|$ is the matrix of the multiplication by the complex number $|g|$. Indeed, $\omega=\epsilon_{1}+i \epsilon_{2}$ is J_{0}-holomorphic 2 -form and $g^{*} \omega=|g| \omega$ by lemma 4.1. Now the proof is straightforward.

7. THE CLASSIFICATION OF 2-DIMENSIONAL FIXED POINTS SETS OF INVOLUTIONS

Now we enumerate connected 2 -dimensional components of all sets Fix $(h), h \in$ $I(m)$ on the Fermat manifold (F, m). According to the proposition 2.1 and the remark at the end of $\S 4$, we may assume that $h \in I(m)-I^{0}(m)$ and it is an involution. By corollary 4.2, h preserve precisely one of the 5 distinguished complex structures J_{t} (considered up to a signe). Moreover, conjugating h in $I(m)$, we may suppose that h preserve one of the complex structures $J_{t}=J_{0}, J_{1}, J_{x}, \chi=\frac{1}{\sqrt{2}}(1+i)$. Hence, the set Fix (h) is a J_{t}-complex curve. All such involutions h (up to a conjugation) and its fixed points set Fix (h) are described in the following

THEOREM 7.1. Any involution $g \in I(m)-I^{0}(m)$ is conjugated into the group $I(m)$ to one and only one of the involutions h from the table 3.

There are also indicated: the h-invariant complex structure J_{t}, the connected components C of the set Fix (h), the Euler characteristic $\chi(C)$ (equal up to the signe to the intersection number $C \cdot C)$, the integral $d(C)=\int_{C} \gamma$, wher $\gamma \in \Gamma \cap \mathbf{R}^{+}\left(m \circ J_{t}\right)$ is the generator of the group $\Gamma \cap \mathbf{R}\left(m \circ J_{t}\right) \approx \mathbb{Z}$ (that is, $\gamma=\epsilon_{0}$ for $t=0, \gamma=\epsilon_{2}$ for $t=1, \gamma=\epsilon_{2}-\epsilon_{1}$ for $t=\chi$), the number a of the involutions g conjugated to h, the number b of 2 -dimensional component for all sets Fix $(g), g=x h x^{-1}, x \in I(m)$. We denote by C^{ρ} a surface of genus ρ.

Table 3.

h	J_{t}	Fix (h)	$\chi(C)$	$d(C)$	a	b
σ_{0}	J_{0}	C^{3}	-4	4	4	4
α_{01}	J_{0}	C^{3}	-4	4	24	24
$\iota_{0} \iota_{2} \alpha_{01} \alpha_{23}$	J_{0}	$C^{0}+C^{0}$	2	1	24	48
$\alpha_{01} \alpha_{23} \tau$	J_{1}	C^{5}	-8	8	6	6
$\sigma_{0} \sigma_{2} \alpha_{01} \alpha_{23} \tau$	J_{1}	\emptyset	0	-	6	0
τ	J_{1}	\emptyset	0	-	4	0
$\iota_{0}^{-1} \iota_{1} \tau$	J_{1}	C^{1}	0	4	12	12
$\sigma_{0} \alpha_{23} \tau$	J_{1}	$C^{0}+C^{0}$	2	2	24	48
$\iota_{1} \tau$	J_{x}	C^{0}	2	4	16	16
$\iota_{0}^{-1} \alpha_{23} \tau$	J_{x}	C^{2}	-2	8	24	24

COROLLARY 7.1. (i) There are $76 J_{0}$-complex, $66 J_{1}$-complex and $40 J_{x}$-complex connected 2-dimensional submanifolds which are fixed point sets of involutions $h \in$ $I(m)$.
(ii) The complete number of connected 2 -dimensional submanifolds which are connected components of the sets Fix (g), is equal $288=76+66+66+40+40=2^{5} \cdot 3^{2}$. Each of these submanifolds is complex with respect to one of the 5 distinguished complex structures J_{t} (considered up to a signe).

Outline of the proof. The first and the second columns of the table are established by the straighforward calculations based on the proposition 6.2. The Euler characteristic $\chi($ Fix $(h))$ is calculated as in § 6 or, in some cases (for example, for $h=i_{0}^{-1} i_{1} \tau$) by means of the analytical geometry. Then the results of the third and the fourth columns follow from the lemma 6.1. The calculation of the numbers a and b is straightforward. To calculate d, we note that for J_{0}-holomorphic involution h the form $\gamma=\epsilon_{0}=$ $m \circ J_{0}$ is cohomologic to the Kähler form of the metric induced on F from the FubiniStudy metric. Hence, $d(C)$ is equal to the degree of the algebraic curve $C \subset \mathbb{C} P^{3}$ or, which is the same, to the intersection number $C \cdot H$ of C and a general hyperplane section H. For J_{1}-holomorphic involution h, the form $\gamma=\epsilon_{2}=\sqrt{2} m \circ J_{1}$ is dual to the J_{1}-complex cycle $C_{1}=\operatorname{Fix}\left(\rho_{1}\right)$ (theorem 6.2) and, hence, $d(C)=C \cdot C_{1}$ is equal to the number of the intersection point $\left|C \cap C_{1}\right|$. (Since C and C_{1} are totally geodesic submanifolds in (F, m), all intersections are transversal.)

For J_{x}-holomorphic involution $h, \gamma=\epsilon_{2}-\epsilon_{1}$ and $\omega_{x}=2 \epsilon_{0}+i\left(\epsilon_{1}+\epsilon_{2}\right)$ is the J_{χ}-holomorphic 2 -form. Hence, it integral over J_{χ}-complex cycle C vanishes. So we have

$$
\begin{aligned}
d(C) & =\int_{C}\left(\epsilon_{2}-\epsilon_{1}\right)=+2 \int_{C} \epsilon_{2}-\int_{C}\left(\epsilon_{1}+\epsilon_{2}\right)=2 \int_{C} \epsilon_{2} \\
& =2 C \cdot \operatorname{Fix}\left(\rho_{1}\right) .
\end{aligned}
$$

Since the form ϵ_{2} can be written explicitely as the real part of the J_{0}-holomorphic 2 -form ω, last integral can be calculated.

8. THE J_{1}-HOLOMORPHIC EMBEDDING OF THE FERMAT MANIFOLD INTO © P^{5} AND THE ASSOCIATED CALABI-YAU METRIC

Let X be an B-invariant quartic in $\mathbb{C} P^{3}$ from the family Q with the Calabi-Yau metric m, in particular, the Fermat manifold. (see § 6). We denote by J_{0} (resp., J) the standard (resp., B-invariant) complex structure on X. Since $\tau_{*} J_{0}=-J_{0}, \tau_{*} J=$ J the Kähler forms $m \circ J_{0}$ and $m \circ J$ are orthogonal and, hence, the structure J_{0} and J anti-commute.

Consider the fixed points sets $C_{i}=\operatorname{Fix}\left(\rho_{i}\right)$ of the involutions $\rho_{i} \in I(m), i=$ $1, \ldots, 6$, see $\S 6$. By the theorem $6.1,6.2$, the sets C_{i} are J-complex connected smooth curves of genus 5 . The curves C_{i} are mutually homologous and, hence, they are linear equivalent. We denote by L the line bundle defined by C_{j}.

LEMMA 8.1. Let G be a smooth irreducible curve of genus $N>0$ on a K3-surface Y and $L=[C]$ is the associated line bundle. Then
(i) $\operatorname{dim} H^{0}(Y, O(L))=N+1, H^{1}(Y, O(L))=H^{2}(Y, O(L))=0$;
(ii) the linear system $|C|$ has no basic points and, hence, it is defined the holomorphic map

$$
j: Y \rightarrow P\left(H^{0}(Y, O(L))^{*}\right) \simeq \mathbb{C} P^{N}
$$

Proof. Since the canonical bundle K_{Y} is trivial, the adjunction formula implies $\left.L\right|_{C}=$ K_{C} and $H^{0}\left(C,\left.L\right|_{C}\right)=H^{0}\left(C, K_{C}\right)=\mathbb{C}^{N}$. Since Y is simply connected, $H^{1}(Y, O)$ $=0$. Hence, the cohomological sequence, induced by the sequence of sheaves

$$
0 \rightarrow O_{Y} \rightarrow O_{Y}(L) \rightarrow O_{C}(L) \rightarrow 0
$$

can be written as

$$
\begin{aligned}
0 & \rightarrow H^{0}(Y, O)=\mathbb{C} \\
& \rightarrow H^{0}(Y, O(L)) \rightarrow \mathbb{C}^{N}= \\
& =H^{0}\left(C, O\left(K_{C}\right)\right) \rightarrow 0
\end{aligned}
$$

So we have $H^{0}(Y, O(L)) \simeq \mathbb{C}^{N+1}$. By the duality of Kodaira-Serre, $H^{2}(Y, O(L))$ $=H^{0}\left(Y, O\left(L^{*}\right)\right)^{*}=0$, since the divisor C is effective. Using the addivity of Euler characteristic, we have

$$
\begin{aligned}
\chi(Y, O(L)) & =h^{0}(Y, L)-h^{1}(Y, L)+h^{2}(Y, L)= \\
& =N+1-h^{1}(Y, L)=\chi(Y, O)+\chi\left(C, O\left(K_{C}\right)\right)= \\
& =2+(N-1)=N+1
\end{aligned}
$$

Hence, $H^{1}(Y, O(L))=0$. These prove (i) The surjectivity of the map $H^{0}(Y, O(L))$ $\rightarrow H^{0}\left(C, O\left(\left.L\right|_{C}\right)\right)$ implies that the basical set of $|C|$ is contained into the set of points where all sections of the bundle $\left.L\right|_{C}=K_{C}$ vanish. The last set is emply. This proves the lemma.

Applying the lemma to the J-holomorphic curves C_{i} of genus 5 on $X \in Q$, we receive a J-holomorphic map

$$
j: X \rightarrow \mathbb{C} P^{5}=P\left(H^{0}(X, O(L))^{*}\right), \quad L=\left[C_{j}\right]
$$

PROPOSITION 8.1. All fibers of the map $j: X \rightarrow \mathbb{C} P^{5}$ are finite and the image $j(X)$ is contained into the intersection of three quadric in $\mathbb{C} P^{5}$.

Proof. By theorem 6.2., the curve $C_{i}(i=1, \ldots, 6)$ is dual to the cohomology class $\sqrt{2}[m \circ J]$. Hence, the line bundle $L=\left[C_{i}\right]$ is positive and, by Kodaira theorem, it is ample. This implies that all fibers of j is finite. To prove the second assertion, we compute $h^{0}(X, L \otimes L)$. As in the proof of the lemma 8.1, we show that $h^{0}(X, L \otimes L)=$ $\chi(X, O(L \otimes L))$. Then the Noether formula gives

$$
\begin{aligned}
h^{0}(X, L \otimes L) & =\chi(X, O)+\frac{1}{2}((L \otimes L) \cdot(L \otimes L)+(L \otimes L) \cdot K) \\
& =2+\frac{1}{2}\left(2 C_{i}\right) \cdot\left(2 C_{i}\right)= \\
& =2+2 \cdot 8=18
\end{aligned}
$$

On the other hand, $h^{0}\left(C P^{5}, O(2)\right)=21=18+3$. Now the arguments from [3], ch. $4, \S 5$ establishe the assertion.

We state without proof more precise result.

THEOREM 8.1. The divisors $C_{i}=\operatorname{Fix}\left(\rho_{i}\right)(i=1, \ldots, 6)$ on the complex surface (X, J) are very ample, that is the associated holomorphic map $j: X \rightarrow \mathbb{C} P^{5}=$ $P\left(H^{0}(X, O(L))^{*}\right)$ is an embedding. The Calabi-Yau metric m^{\prime} associated with embedding j is related with the standard Calabi-Yau metric m on X (associated with the embedding $X \subset \mathbb{C} P^{3}$) by: $m^{\prime}=\sqrt{2} m$. The image $j(X)$ coincides with the smooth complete intersection of three diagonal quadric of the form $\left\{\xi \in \mathbb{C} P^{5}, a_{1} \xi_{1}^{2}+\right.$ $\left.\ldots+a_{6} \xi_{6}^{2}=0\right\}$. The group $B \subset I(m)$ acts in $j(X)$ as the projective group

$$
\left\{\operatorname{diag}\left(1, \epsilon_{1}, \ldots, \epsilon_{5}\right), \epsilon_{1}= \pm 1\right\} \simeq\left(\mathbf{Z}_{2}\right)^{5}
$$

REFERENCES

[1] I. Piatetski-Shaproo and I. Shafarevitch: A Torelli theorem for algebraic surfaces of type K3 . Math. USSR Isvestiya 35 (1971), 530-572.
[2] G.N. Tiurina: in «Algebraic surfaces» Trudy MIAN, 1965, v. 75, chapt. 9.
[3] Ph. Griffiths, J. Harris: Principles of algebraic geometry, 1978.
[4] Geometric des surfaces K3 , Asterisque, 1985, N. 126.
[5] A. Besse: Geometrie Riemannianne en dimension 4, 1981.
[6] Sh. Kobayash: Transformation groups in differential geometry, 1972.
[7] W. Barth, C. Peters, A. Van De Ven: Compact complex surfaces, 1984.
[8] D. Mumford: Tata Lecture on Theta I, II, 1983.
[9] N. HrTchin: On compact four-dimensional Einstein manifolds, J. Differ. Geom., 1974, 9, N 3, 435-442.
[10] A. Besse: Einstein manifolds, 1986.
Manuscript received: September 11, 1989

