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Calabi-Yau metric on the Fermat surface. 
Isometries and totally geodesic submanifolds 

D.V. ALEKSEE • SKY, M.M. GRAEV 

MGZPI, USSR, Moscow, 
Radischevskaya, 18 

A b s t r a c t .  The hyper- Kahler Calabi- Yau metric m on the Fermat surface 

associated with the embedding F C ¢. pS is studied. We prove that the lattice of  
integer parallel 2 -forms on the Riemannian manifold ( F, m) has the Gram matn'x~ 
diag(4 ,8 ,8 ) .  We use itfor calculation of  the isometry group Isom(m).  The action 
of  this group on the twistor space of  parallel complex structure on ( F, ra ) is described 
and the existence o f  10 complex structures with non-trivial stabilizer in Isom ( m) is 
established. Then we give the classifcation of  all connected 2 dimensional totally 
geodesic submanifolds which are fixed points sets of  isometries. There are 288 such 
manifolds o f  genus 0 , 1 , 2 , 3 , 5 .  They are complex curves respect to one o f  the 5 (up 
to a sign) distinguished complex structures. 

From the physical point of  view such submanifolds are interpreted as (holo- 
morphic) instantons for sigma model with the value in K3 surface. Such instan- 
tons are studied by physicistis in relation with string theory.(*) 

The generalization of  the results to some class of  Calabi- Yan metn'cs on K3 sur- 
faces X ,  associated with the embeddings X C UP is given. 
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1. INTRODUCTION 

The Fermat surface F is the complex surface in • pS defined by the equation 

s + + + = o ,  

where z 0 , . . .  , :r s are the homogeneous coordinates in ¢ p 3 .  

The Fermat surface is a K3-surface, i.e. a simply-connected compact complex sur- 

face with Chem class c 1 = 0. Any K3-surface as a real manifold is diffeomorphic to 

F [21. 
By Yau theorem [10], any Kiihlermetric ~ on a K3-surface X determines a Ricci- 

flat Kiihler metric. It is defined as the unique Ricci-flat K~aler metric m whose K~ihler 

form is cohomologous to the K~ihler form of the metric ~. This metric m has two 

properties: 

1) m is hyper-K~_ler, i.e. its holonomy group 

Ho l (m )  = 8p(1) = ,.qU(2); 

2) m is anti-auto-dual, i.e. *R = - R ,  where R is the curvature 2 -forms of m 

and • is the Hodge operator. 

Note that for a Riemannian metric on a 4-manifold the properties 1) and 2) are 

equivalente. By Hitehin theorem [10]. Ricci-flat metrics on K3-surfaces exhaust all 

non-flat hyper-K~ler  metrics on compact 4 -manifolds. 

Any holomorphic embedding X & ff pN of K3-surface X defines Kflfler metric 

on X induced by the Fubini-Study metric on cr pN.  The corresponding Ricci-flat 

metric m on X is called Calabi-Yau metric associated with the embedding. In the paper 

we study the Calabi-Yau metric m on the Fermat surface F associated with the tau- 

tological embedding F C tr p3.  We shall call such metric standard. The Riemannian 

manifold (F,  m) will be called Fen-nat manifold. The explicit form of the metric m 

is not known. Nevertheless, using some results from the geometry of K3-surface, we 

compute the group I ( m )  of isometries and determine all totally geodesic submanifolds 

of the Fermat manifold which are fixed points sets of isometries. 

In § 2 we establish some properties of the group I ( m )  of isometries of a hyper- 

K/ihler metric m on a 4 -manifold X. We study the action of I ( r a )  on the space E ~_ 

IR s ofparallel 2-forms on X and onthe Grassmanian G 2 ( E )  ~ f f p l  = ff U{oo)  

of oriented 2 -subspace of E which identifies with the manifold of parallel complex 

structure on X. We investigate the fixed points set Fix(g) of an isometry 9 E I(ra). 
Finally, we prove that iff m is the Calabi-Yau metric associated with a linear normal 

embedding X C ¢ pN then the group I(ra, "4-,I"o) of isometries of m which preserve 

the induced complex structure 3"0 up to a signe is identified with the group Au t (X)  

of(anti)  holomorphic transformations of ~ p N  preserving X. In §3 we determine 
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the lattice F C E of integer parallel 2 -forms on the Fermat manifold (F,  rn). It has 

Gram matrix d i ag (4 ,8 ,8 )  with respect to some basis c 0 = rn o J0, cl, c2- Using this 

result, we ddculate in § 4 the group / ( rn)  of isometrics explicitely: 

l ( m )  = G 12 rG,  where T is the antiholomorphic involution of F C C p3 de- 

fined by the complex conjugation of the homogeneous coordinates in C p3 and G = 

I ( m ,  50) = $4 • (:E 4) 3 is the group of J0 -holomorphic transformations of  F gen- 

erated by permutations of  the coordinates x0 , . . .  , x 3 in C p3 and its multplicafions 

by ,~/-. The group I ( rn)  has the order 2 l0 . 3 and acts in E as the full group of 

orientation preserving automorphism of the lattice r ,  that is the dihedral group D 4 . In 

the Grassmarmian G 2 ( E  ) = 11: LI {oo} of parallel complex structure ,It, t E ¢ U {oo} 

there are exactly 10 distinguished complex structures with non-trivial stabilizer in D4 : 

l) Jr0,jroo = -jr0; 
2) Jr,,t 4 = l, Jr-t = -jrt 

3) Jr ,  t4 = -I, Jr-t = -jrr 
As indicated above, they decompose into 3 orbits of the group D 4 . The complex 

structure .To is the natural structure of the complex surface F C C p3.  

In § 5 we study and enumerate all projective lines on the Fermat surface F. There 

are exactly 48 such lines. They are mutually non-homologous and generate 20 -dimen- 

sional subspace in H 2 ( F  , It.) dual to the space H I J ( F ,  ~.). The lines are connected 

components of the fixed point set of involutions h E I ( rn ) .  Hence, they are totally 

geodesic submanifolds of  the Fermat manifolds (F,  m) .  

In § 6 we define some subgroup B ~ ( 7 2 ) 5  of the group I ( m )  ofisometries 

of the Fermat manifold. It contains .1.0.antiholomorphic involution r and is gener- 

ated by 6 antiholomorphic involutions Pi' 3" = 1 , . . . ,  6. We describe the fixed points 

set Fix(h)  for h E B. In particular, we prove that C i = Fixpi  (3" = 1 , . . . , 6 )  

is topological sphere with 5 handles. Then we show that the subspace H 2 (F ,  ~7) s 

of  B-invariant elements from H 2 ( F  , ¢.) is 1-dimensional. This implies the exis- 

tence a unique (up to a signe) B-invariant parallel complex structure J. Since Ci(3" = 
1 , . . . ,  6) is a B-invariant J-complex curve, the dual harmonic integer 2-form '/i E 

r is B-invariant. Hence, it is proportional to m o J. Since 

"/j .'/j = cj .cj = -x< cj) = 8 

and the only elements ,7 E F with ~t''/= 8 are +e1,+e2, we can indctify '/l ='/2 = 

• .. = '/6 with e 2. Then jr is identified with the distinguished complex structure ,/'I. 

Hence Jrl is characterized as the unique (up to a signc) B-invariant parallel complex 

structure. 

In § 7 we classify all connected 2-dimensional totally geodesic submanifolds C 

in the Fermat manifold (F,  rn) which are connected components of fixed points sets 

Fix(g) ,  g E I ( m ) .  
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They are connected components of the fixed points set Fix (h) of  involutions h E 

_r(m). There are 288 = 2 s .  32 such submanifolds with the Euler characteristic 2 , 0 ,  

- 2 ,  - 2  2, - 2  3. Thy are complex submanifolds with respect to one of the distinguished 

complex structures. In particular, the 3" o -complex submanifolds C are eitherprojective 

lines (i.e. 48 spheres) or spheres with 3 handles (28); the 3"!-complex submanifolds are 

spheres (48), tori (12) or spheres with 5 handles (6); the Jx-complex submanifolds 

(X = ( 1 + i ) / v ~ ,  X 4 = - 1 )  are spheres (16) or spheres with 2 handles (24). 

In § 8 we represent the Fermat surface F with the complex structure 3.! by a 

complete intersection of 3 diagonal quadratic in ~ p5 and state that the Calabi-Yau 

metric rn ~ associated withthe embedding F C t~ p5 is isometric to v~-ra, where m 

is the standard Calabi-Yau metric on F. In this model the group /3 acts as the projective 

group {diag( 1, ~ I , . . . ,  c5), ci 2 = 1 }. 

To construct the embedding j : F ~ j ( F )  = K C C p5 we prove that 3.!-complex 

curves of genus 5 Uj = Fix Oj (J  = 1 , . . . ,  6) are linear equivalent and define the very 

ample linear bundle L = [Cj.] with H ° ( F , O ( L ) )  ,,~ ~.6.The map j is defined as 

the map F ~ P ( H ° ( F ,  O(L))*)  associated with the bundle L. 

REMARK. 1) Many results of  § 6 - 8 remain true if one changes F by an /3-invariant 

quartic X C ~ P 3 ,  see § 6 - 8. 

2) The explicit construction of the Calabi-Yau metric m on F reduces to the 

identification of two holomorphically non-equivalent K3-surface : F C Ir P3 and 

K C ¢ p5 ,  that is, to the explicit description of the diffeomorphism j : F --* j ( F )  = 

K C ¢ pS. This diffeomorphism is I ( ra ,  Jl)-equivariant and it is an isometry of the 

Riemannian manifolds ( F, ra) and ( K, m' /v /2) .  
3) The surface K is a Kummer surface in ~ p5 associated with the Picard group 

Pic0(C) of  some curve of genus 2. More precisely, C is the 2-fold covering of the 

Riemannian sphere ramified in 6 vertices of the octahedmn. The embedding K C tr p s  

is constructed as in [3]. Ch. 6. 

2. PROPERTIES OF ISOMETRIES OF A 4-DIMENSIONAL 
HYPER-KA, HLER MANIFOLD 

Let ra be a non-fiat hyper-Kfib_ler metric (i.e. a Riemannian metric with the holon- 

omy group Ho l ( m )  = Sp(1))  on a compact 4-manifold X. We denote by E ~ ]R 3 

the space of parallel 2-forms on (X,  m) with the natural orientation and the Euclidean 

metric 

The manifold of parallel complex structures on (X,  ra) is identified with the Grassma- 

nian G2(E)  of oriented 2-subspace in E :  Parallel complex structure J defines the 
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subspace (J)  C E withe the base Rew, Imto, where to ~ 0 is a holomorphic 2 -form 

on the complex manifold (X,  J ) .  In other words, (J)  is the orthogonal complement 

to the K~aler form m o Y in E. The manifold G2(E)  is identified with the complex 
quadric 

Q = {a E P ( ~  ® E )  "~ ~ P 2 , t ~ - t ~ =  0} _ C P  l = • U {oo). 

A quantity t E C U {oo) corresponds to the point t~ E Q, a = (2 t ,  i ( t  2 + 1),t  2 - 

1) and to the 2 -subspace of E 3 with the base Re t~, Im ix. The associated complex 

structure on X will be denoted by Jr- We denote by F the lattice of integer 2 -forms 

in E.  Let I ( ra )  be the (finite) group of isometrics of the metric ra and I ° (ra) is the 

kernel of its natural representation in E.  

LEMMA 2.1. Let ra be a hyper-Kghler metn'c on 4 -manifold X (It is not supposed that 

X is compact and simply connected). 

(i) Any  isometry 9 E I(  ra) induces in E a proper orthogonal transformation. 

Hence, there is a f x e d  vector e~ 0 for O- It is unique (up to a proportionah'ty) i f  

O ~ I°(ra)  and it acts in the 2 -plane e ± as the rotation by an angle 90= ~o(o) . 

(ii) For O E I (ra) ,  there is a O-invadant parallel complex structure Jg in X 

defned by the condition ( Jg) = e ± . It is unique (up to a signe) i f  9 ~ I° (ra).  

(iii) Let z be a f x e d  point o f  O E I ( ra) . In suitable Jg-holomorphic coordinates 

, the differential dos i sg ivenby  diag(ei*l, ei~':),~ol + ~o 2 = ~o(o). 
(iv) For v ~  O, v E T~X, let I~ be the group o f  isometn'es wln'cA preserve x E X 

and v. Then the map v J :  E --* v -L C T ; X ,  defined by the internal mul6plication by 

v, is an isomorphism o f  I~-modules. In pam'cular, I~ f l I°  ( ra) = ( i d )  and for h E I~, 

the condition h" E I ° (ra) implies h'* = id .  

The proof of the lemma is straight forward. • 

PROPOSITION 2.1. Let ( X ,  m) be a hyper-Kgthler 4 -manifold. 

1) Foranyisometry O E I ° ( ra) ,O~ id, thet~xedpointset Fix(0) isdiscrete. 

2) Distinct involutions from I ° (ra) have not common f x e d  points. 

3) Suppose that each element from the quotient group I ( m ) / I ° ( r a )  has even 

order. Then each 2 dimensional component o f  the f x e d  point set Fix (0),  O E I ( r a ) ,  
is contained into the tixed point set Fix (h) o f  the involution h = O ~ E I ( ra ) - I ° ( ra ) 

where 2 k = order O. 

4) Foraninvolution h E I(ra) - I ° ( r a ) ,  theset  Fix(h) i s e i t he remp tyor  

has only 2 dimensional components. For distinct involutions h, h' E I ( m )  tim sets 

Fix (h) ,  Fix ( h') have no common connected components. 

5) Let h l , h 2 , h  3 E I ( m )  - I°(ra)  be distinct commuting involutions which 

preserve the same parallel complex structure. Then 

Fix(h 1) M Fix(h  2) rl Fix(h 3) = 0. 
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Table 1. 

d(h) 2 3 4 5 6 7 8 

I Fix (h) [ 8 6 4 4 2 3 2 

6) Suppose X is diffcomorphic to the K3-surface and id ~ h E /o ( ra) .  / f  the 

order h = 2 ,3  or 4,  then I Fix(h)l  = 8 ,6  or 4 respectively. 

REMARK. It can be proved that for any h E I ° (m) ,  the number I Fix (h) I <- 8 and it 
is defined by the order d(h) <_ 8 of h as it is indicates in the table 1: 

Proof. The statements 1), 3) follows from iv) and 2), 4) follows from (ii), (iii). The 

assertion 2) implies 5), since the action of the involutions hi  , h2, h 3 on the space E is 

identical and, hence, h I h2, hi h3 E / o  (m) .  Now we prove 6). Since h E I ° (m) pre- 

serves the complex structure ,To, the Jo'holomorphic Lefschetz number [3] L( h, O) 
isdefined. For K3-surface, wehave H 1,° = 0 , H  °,° = H 2,° ~_ C with the trivial ac- 

tion of h. Hence L( h, O) = ~ tr( h* I H°,~) = 2. The holomorphic Lefschetz formula 

and 1) imply that Fix(h)  is finire and isn't empty. Suppose that order d(h) = 2 ,3  

or 4 .  Then, by lemma 2.1. (ii)the differential dh~ of  h at any h-invariant point x 
. . 2 ~  

is given by dh~ = d rag ( -1 ,  - 1 ) ,  d lag(e- r ,  e ~ )  or, respectively, diag(i, - i ) .  The 
Lefschetz formula is read as: 

E 1 _ N  N N 
2 = L ( h , O )  = det(id -dh~)  4 ' 3 or ~-. 

zEFix(h) 

This proves 6). • 

Now we assume that X is an algebraic K3-surface with complex structure 3"0 and 

m is the Calabi-Yau metric on X associated with a linear normal embedding 

l~ : X -4 ( rP  jv = P ( H ° ( X , O ( L ) )  *) 

where L is a very ample line bundle [3]. 

PROPOSITION 2.2. The group I(  m, +do) o f  isometties o f  the Calabi-Yau metric ra 

which preserve the complex structure .To up to a signe is identified with the group 

Aut (#(  X )  ) o f  holornorphic and anti-holomorphic transformations o f  ¢. pt¢ which 

preserve #( X )  : 

I(  m , ± J  o) = Aut(#(X))[~,(x)- 
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Proof. Denote by T/ the K~le r  form of the Fubini-Study metric ~ on C pN. The 

cohomology class [ ~/] is dual to the homology class of hyperplane section. Let O be 
a holomorphic (hence, projective) transformation of ~ P ~  preserved o ( X ) .  Then it 
preserves the cohomology class [T/I#(X)]. Hence, by Yau theorem, it preserves the 

Calabi-Yau metric rn associated with the embedding as the unique Ricci-flat KhYlfler 

metric m with K/ihler form m o -To E [~]#(X)] .  The similar argument applies to 

the case when g is anfiholomorphic transformation and, hence, g.Jo = - J o ,  [O*T/] = 

- [ ,7].  
Now we prove the converse assertion. Note that the line bundle L is the restriction on 

# ( X )  of the hyperplane bundle [H]  over C P  Iv [3]. Hence, the Chem class c l (L)  

is equal to [ ~/[#(X) ]. Since X is simply connected, there is only one (up to an isomor- 

phism) line bundle with the Chem class [ ~I/~(X) ]. Let g E I ( m ,  -1- Jo)- For clarity, 
we assume that 0 preserves the complex structure Jo. Then g preserves the Ka'hler 

form m o Jo and, hence, the cohomology class [ m o  J0] = cx(L).  This implies that 

the line bundle 9*L is isomorphic to /,. Hence, g is covered by an automorphism 
of the bundle L. Since any fiber preserving automorphism o f / ,  is the multiplication by 

a constant, the automorphism ~ defines up to a constant factor preserves the projective 

embedding # : X --4 p (  H ° (X,  O(L) )  *) = • pN. This proves the proposition. 

3. THE LATTICE F OF INTEGER PARALLEL 2-FORMS ON THE FERMAT 
SURFACE 

Let (F ,  ra) be the Fermat manifold. We shall denote by J0 the standard complex 

structure on F and by c 0 = m o J0 the Kiihler form of the metric m. To calculate 

the isometry group / ( m )  we need the explicit description of the lattice F of integer 

parallel 2 -forms on the hyper-KRder manifold (F,  ra). It derives from the following 

fundamental for us result of IT  Piatetskii-Shapiro and I.R. Shafarevitch. 

THEOREM 3.1. ([ 1], § 8). Let S C //2 (F ,  IR) be the lattice o f  complex algebraic 

cycles on the Fermat surface F and T C tt2 ( F, Z )  is the lattice o f  all integer colm- 

mology classes annulated by cycles from 8. 

1) The lattice T has a basis c1.,c2 with the scalarproducts cl • c2 = O, 

c~ = ~2 = 8. In pam'cul~ F is a singular Kummer surface. 

2) Discdminante o f  the lat~ce S is equal to 64. • 

Using this result, we prove 

THEOREM 3.2. The lattice F o f  integerparallel 2 -forms on the hyper-K~lermanifold 

( F , m )  has an orthogonal basis ¢o,q ,c2  with ~0 = 4,c~ = ~ = 8. lnpam'cular, for 

any ,,/E F ,  ,,/2 = 0(rood 4). 
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Proo£ The lattice T is naturally identified with the sublattice T '  of  the lattice F which 

consists of parallel 2 -form onhogonal to the K~hler form e o . Therefore r contains 

the sublattice F ' =  Z e 0 ~ T '  with the orthogonal basis Co,el,e2, where ~ = deg F = 

4,e12 = e~ = 8. 

We need only to prove that r = r ~. This follows from the facts: 

1) T '  = F lq ( T '  ®(D) (theorem 3.1) 

2) the lattice F is even and integer as a sublattice of the even lattice H 2 (F,  7 )  

- 1 0 ~ 2 ( - N 8 )  [21. 

Indeed, if we suppose that F ¢ F '  then there is an element q E F of the form 

'7 = o~0e 0 + ale1 + c~2c2, 0 < c~ 0 < 1, 0 < c~ i < 1, i = 1 ,2 .  The conditions 
,/2 E 2 Z , , / . c j  (5 Z , ]  = 0 , 1 , 2  imply 4o~ 0 (5 Z ,  8c~ i (5 Z , i  = 1,2,  and 

elementary arithmetic arguments lead to the contradiction. • 

4. C O M P U T A T I O N  OF THE G R O U P  OF ISOMETRIES 

The result of § 3 imply the following. 

THEOREM 4.1. Let ( F, m) be the Ferrnatmanifold. Then the group ofisometnes I(m) 
is identified with the group of all holomorphic and antiholomorphic transformation of 
~. p3 wtu'ch preserved the surface F. 

Proof.. An isometry g (5 / '(ra) preserves the lattice F .  Hence, it preserves the pair 

of vectors q-c 0 (5 F as the only vectors with the scalar square 4.  This shows that 

g.J0 = +J0-  Now the theorem follows immediately from the proposition 2.2. • 

Denote by r the anti-holomorphic transformation of ¢ p3 (and also its restriction 

on F )  which is induced by the complex conjugation of the homogeneous coordinates. 

By theorem 4.1., I ( m )  = A u t + ( F ) U r o A u t + ( F )  = A u t ( F ) .  Hence, the computation 

of the isometry group I ( m )  reduces to the computation of the group Aut ÷ (F )  of all 

projective transformations of • p3 which preserve F. We prove more general result. 

Denote by Fa~ the Fermat hypersurface in ~?pn-1 defined by 

= 0  ~0 d 4- . . . 4 -  Xn_ I 

PROPOSITION 4.1. The group Aut + (Fd,,,) of all projective transformations of C P "  1 

which preserve Fa,,, is the semi-direct product Aut + (Fd,~) = ( Z  ~) n-1 .Sn of the group 

8,, of all permutations of the coordinates and the group (Za)n-1  = {diag( 1, Q , . . . ,  

e, ,_l) ,e ~' = 1} (We describe a projective transformation g by the matrix A of the 

corresponding linear transformation ~ of I~" defined up to a scale factor). 
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We prove the proposition by the induction on n. For n = 2 ,  the proof is straight 

forward. Let now n >  2 and O E Aut+(Fa,,,) = G. 'Denoteby A = ( A i i )  the matrix 
Then which represents 0 and preserves the function f = z0 ~ + . . .  + z,,__ l . 

d 
(4.1) E uia = E z i '  

where u i = ~ zjAji. 
Multiplying 0 by some element from G, we may assume that A ~ I , ~  1 ~ 1 and 

u,~_l ~ (E z,~_l. These imply that 

(i) the linear functions z 0 , . . .  , z ,_  z on IF" are linear independent modulo v = 

Us_ 1 -- Xn_ 1 and 

(ii) zn_ 1 ~ 0(mod v). 
The identity (4.1) implies 

E d d t t i - - ' E  :~d= d x~_ 1 - u,_ 1 - 0 (mod v). 
i<n-2 i<n-2 

By (i), we may consider x 0 , . . .  , x,,_ 2 as the coordinates on the subspace v = 0 .  Using 

inductive assumption, we can write 

u i = %(OZoco(mod v), 

where s is some permutation and ~ = 1. Multiplying 9 by some element from G, 

we may assume that 

u i = z~ + )~iv, i _< n -  2; u,,_. 1 = z ~ l  + v .  

Then we have the identity 

u , -  E x =x~_ 1+ E )~'x~ 1 ( m o d v ) .  
0 ~ - ~  _ 1 i~n-I ign--2 

The conditions (i), (ii) imply that all )~i except one vanish. This reduce the assertion to 

the case n = 2.  • 

Retuming to the Fermat surface F = F 4,4, we fixed the following notations: ia = 

• = -2, otm is the transposition of  the homo- d iag( ]  1 , . . . , 1 1 , ~ , 1 , . . . , 1 ) ,  i =  x, FL-T, crv ,p 

geneous coordinates z v and x~(p, q = 0 , . . . ,  3). 
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COROLLARY 4.1. Let ( F, m) be the Fermat manifold. Then I(  m) = G n T(~, where 

G = ( Z  4) 3.84 is the group o f  all holomorptu'c transformations o f  F generated by the 

transformations iv, ~r~(p, q = 0 , . . .  , 3 ) .  • 

We notice that any projective transformation g which preserve F can be represent 

by an l inear transformation ~ of  • 4 which preserves the function f = ~ + . . .  ~:~. 

The transformation .~ is defined up to a factor e E ~ ,  e 4 = 1. Hence, we have the 

homomorphism 

det : G ---, ¢ * ,  g ~ Igl = det  ~. 

CoroUary 4.1. implies that d e t ( G )  = Z 4 = {e,e  4 = 1) .  

We set 

G° = {o ~ G, IoI= 1}, H= (o ~G, IoI= +1}. 

We have a chain of  the normal subgroups 

G O c H c O c I ( m ) .  

LEMMA 4.1. Let to~ 0 be aholomorphic 2 -form on F. Then the action o f  g E G on 

to is given by 

0"to = Iglto- 

In particular, G o = I ° ( m ) .  

Proof. To construct to explicitely, we define the holomorphic 3-form ,/ of  Gelfand- 

Lerey on the surface ~q = { f  --  ~:g + . . . +  ~] = 0}  C ~4 by the relation 

d f A  7 = d4J:. 

Contracting q, with the radial vector fields E = ~ i ~ we receive 2 -form ~0 = EJ 7 

on 8. It is E- invar iant  ( E.ff0 = 0) and E-horizontal  ( E l  ~o = 0) .  Hence, it defines a 

holomorphic 2- form to on F = P,5'. For  g E G,  wehave  .0*(d4z) = 101d4~, ~ ' f  = 

f ,  ~ . E  = E .  These imply the lemma. • 

COROLLARY 4.2. 
I r a  1 ) The group ~ = ~6~'~ is isomorphic to the group o f  all orientation preserv- 

ing automorphisms o f  the lattice F,  that is to the dihedral group D4 . All  elements from 

~ = D 4 have even orders. 
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2) There are exactly 10 points on the Riemannian sphere ¢. p l  o f  the parallel 
l m  

complex structures Jt (see § 1) which have non-tn'vial stabilizer in the group ~ .  
I m  They are decomposed into 3 orbits under ~ : 

1) t = 0 , o o  2) t, t4 = l ,  3) t, t4 = - l .  
The corresponding subspace of  E is generated by the following la~'ce: 
1) Z c l ~ Z c  2 f o r t =  O, 2) Z c o ~ Z c  I f o r t =  1, 3) Z c o ~ Z ( c l + c 2 )  

i+ 1 f o r t  = X := ~ ' -  

Moreover, J.~ = - Jo, J-t  = - Jt for t, t 4 = rk 1. • 

The corollary 4.2. 1) and the proposition 2.1. 3) imply that the determination of 

2-dimensional fixed point set Fix(9) , g E l ( m )  reduces to the case when g is an 

involution. 
In the next paragraph we shall determine such sets which are projective lines. 

5. PROJECTIVE LINES ON THE FERMAT SURFACE 

We determine all projective lines on the Fermat surface F and prove that they are 

totally geodesic submanifolds with respect to the Calabi-Yau metric m. Let A = {(2;0 : 

2;1 : 2 ; 2 : 2 ; 3  ) ,  2 ;02; IZ2Z3 = 0 }  be the coordinate tetrahedron in ~ p 3 .  Let AJ = {x 0 = 

2;i = 0 } and Ai(i = 1 ,2 ,3)  are the pair of its opposite edges. 
The intersection of each edge A i (respectively A J) with the generalized Fermat 

surface Fd= {x0 ~ + . . .  + 2;~ = 0} of the degree d consists of the d points P( i , a )  

(respectively P ' (  i, a)) with the homogeneous coordinates 

( (X : c* : O : O) for P(  i ,a) 

( 2 ; 0 : 2 ; i : z j : 2 ; ~ ) =  ( 0 : 0 : c  b :X)  for P ' (  i, b) . 

Here (i, j ,  k) is a cyclic permutation of the indices ( 1 , 2 , 3 ) ,  X 2 = c, c = ~ is a 

fixed primitive root of the degree d from the unit. 
Denote by l(i, a, b) the projective line which passes trough the points P ( i ,  a) and 

P'( i, b). Obviously, l( i, a, b) C F d. 

PROPOSITION 5.1. 
1) All projective lines on the Fermat surface F a C f. p3 are exhausted by the 

lines l(i, a, b) , ( i ,a ,  b )E Z3 x Z d × Zd,  d > 2. 
2) Twodistinctlines l ( i ,a,b) ,  l(i ' ,a',b') intersectiffoneofthefollowingcon- 

di~ons is satisBed: 
1) i = i ' - l ,  u + b = a ' - U + l  
2) i = i '  1, a = a '  orb=b '  
3) i = i ' + l ,  a - b + l = a ' + b '  
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To prove 1) it suffices to check that a line l C F a intersectes two opposite edges of  

the tetrahedron A. In the opposite case, the line l intersect two faces on A. We may 

assume that the points of  the intersections P, Q have the coordinates ( 1 : p : q : 0) 

and (0  : r : s : 1) ,pqrs~O.  

But the line l = ( P Q )  can't  be contained into F a since the polynomial 

f ( t )  = 1+ ( p +  rt)a+ (q+ st)d+ t ~ 

isn't  identically zero. This contradiction proves 1). The proof of  2) is straighforward. • 

Thus we have 48 lines on the Fermat quartic surface F = F 4 . They are numerated 

by elements of  the group Z 3 x 7 4 × 7 4. We consider some properties o f  these lines. 

Define an equivalence relation on the set of  lines on F by the formula: 

l ( i ,a ,b) , ,~ l ( i ' ,a ' ,b ' )  ¢~ i = i ' ,  a + b =  a' + b ' , a - b = a ' - b ' .  

PROPOSITION 5.2. Each equivalence class o f  lines consists o f  two non-intersecting lines 

I and I t. They compose an orbit o f  the normal subgroup (diag( 1, el, e2, e 1 • e2) , ~ = 

1 ) o f  the group l ( m )  acted on the set o f  lines. The set l U l' is the lfxedpoint set o f  
an involution from the group H C I(  m) (see § 4). The group H acts transitively on 

the set o f  the lines. • 

For example, let a +  b = 2p, a -  b = 2q, p,q E ( 0 , 1 }  C 7 4 • Then the lines 

l( 0 ,  a, b), l (0 ,  a + 2 ,  b + 2) are equivalente and they compose the fixed point set of  the 

involution 

3p,q = (CrlCr2)r~l(cqcr3)q~l~Ea01~z3. 

COROLLARY 5.1. Each projective line on the Fermat surface F is 2 -dimensional to- 

tally geodesic submanifold o f  the Fermat manifold ( F, m).  • 

Let Q = {y E ~P3,y02 + . . . +  y3Z = 0 )  be thequadric. We identify Q with 

~_pl × ~2p1 such that the fibres o f  the projections ~rl, ~r 2 onto the factors compose 

two families of  the straight generatrices of  Q. The mapping q : ~ p3 _ .  ~ p3,  (xi)  --~ 

(x  2) map F onto Q. The mappings 7qoq : F ~ ~ p l ,  i = 1 ,2  define two pencils 

£1, b'-2 of  elliptic curves of  the degree 4 in F. Projective lines of  F are mapped by 

q onto straight generatrices of  Q and, hence, are contained into singular fibres of  the 

pencils. 
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PROPOSITION 5.3. The lines l( i, a, b) and l( i t, a t, b') are contained into one fibre 

o f  the elliptic pencils i f f  they are equivalent under the action o f  the normal subgroup 

{diag( 1, Q,  e2, e 3), ¢2 i = 1 } C I ( m )  acted on the set o f  the lines, i.e. i f f  

i = i ' ,  a - - a ' ( m o d 2 ) ,  b_= b'(mod 2). 

COROLLARY 5.2. 48 lines on F arc dccomposcd into 12 classes. Each class consists 

o f  4 h'nes, which compose an singular fibre o f  one o f  the clh'ptic pencil. Lines from 

different fibres o f  the one pencil  do not intersect. • 

Six singular fibres of each elliptic pencil are situated over points of the base C P1 

S 2 which identify (up to a projective transformation) with two vertices 0, oo, + 1, :El 

of  the octahedron (see [8], ch. I, § 11 .) 

PROPOSITION 5.4. 

1) The self-intersection number o f  a projective line on the Fermat surface F is 

equal 2. Two distinct lines isn't homologous. 

2) Let  f l , . . . , f 4s be the cohomology classes dual to the classes o f  the projective 

lines and e o is the cohomology class o f  the K~hler form m o Jo. Then 

1 
eo = -~(A + ...+/~). 

3) The 20-dimensional cohomology space H I , I ( F ,  It.) is generated by  the 

classes f l , . . . , f 4s . 

Proof. 1) Since the surface F has trivial canonical bundle KF,  the normal bundle N c 

of a smooth curve C in F coincides with the canonical bundle K c ,  that is, the bundle 

of holomorphic 1-forms. Hence, the self-intersection number 

C'-  C = deg N c = - X ( C ) ,  

where x ( C )  is the Euler characteristic. Suppose that the curve C is rational. Then 

C-  C = - x ( C )  = - 2  and the bundle K c has only zero section. The second assertion 

shows that the curve C is not deformable. Since the manifold F is simply connected, 

this implies that distinct projective lines isn't cohomologous. 

2) Let Mi, o be the plane contained the poim P ( i , a )  E A i N F  and the opposite 

edge A[ of the coordinate tetrahedron. The set F f~ Mi, o consists of four projective 

lines. Hence, the union of these lines is finear equivalent to the class of hyperplane 

section which is dual to e 0 . Averaging on 12 such planes, we prove 2). 
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3) Let f l , . - . ,  f24 be the cohomology classes which are defined by the lines from 

singular fibers of the elliptic pencil £1- These classes generate the hyperplane a ± C 

H1,1(F, ~ )  orthogonal to a general fibre a of the pencil £1 [1], § 8. Let l C F 
a line which is contained into a fibre of the pencil $2- Then I isn't contained into the 

fibres of ~1 and associated cohomology class f ~  a ±. Hence, the classes f l , - . . ,  f24, f 
generate the space H I J ( F ,  ~) .  This proves 3). • 

It is known that there are 27 projective lines on a cubic, in particular, on the Fermat 

cubic F 3 . They generat the Picard lattice [3]. Similar result which we state without 

proof is true for the Fermat surface F = F 4. 

THEOREM. The lattice S o f  complex algebraic cycles on the Fermat surface F is gen- 

erated by the classes o f  48 projective lines. • 

6. GROUP CHARACTERIZATION OF THE DISTINGUISHED 
COMPLEX STRUCTURES 

Now we construct the involutions p E I (m)  such that the homology class of Fix 

(p) C F is dual to the harmonic 2-form e 2 = x/~-m o J l ,  (see § 3 ,4) .  This implies 

the characterizazion of the distinguished complex structures on the Fermat manifold 

(F,  m) in terms of the stabilizers in the group I ( m ) .  This results are used in § 7 
to study the fixed points set of involutions. 

Denote by A C P G L 4 ( ~ )  the finite group generated by the projective transforma- 

tion 

crj~ = o o o tri, oq = t~Oi o Oljk 

where ( i , j ,  k) are cyclic permutations of(1,2,3) and ai, %k are defined in § 4. Then 

A ~ ( Z 2 )  4. Let B the group generated by A and the complex conjugation 7-. We 

set 

pi=C~oiOt~jkor, pi+~=CroCripi, i =  1 ,2 ,3 .  

The involutions Pi(i = 1 , . . . ,  6) generate the group B ~ ( Z  2) 5 and Pl °P2 o...op6 = 

i d .  Notieethat B preserves the Fermat surface F. Hence, we may identify B with a 

subgraug-of ~(m).  Then A = B t~ I ° (m) .  

THEOREM.6J-. Foreach b E B,  the fixedpoints set Fix (b) o f  b into F and the Euler 

charaetefis~ic ~.( Fix ( b ) ~ are described in the following table: 
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Table 2. 

b E B Fix b ×(Fix b) numbers of 
elements b 

id F 24 1 

A - {id } finite set 8 15 

pj connected 2 dimensional - 8  6 
submanifold 

other 0 0 i0 

Proof. It is well known [4] that for K3 surface F x ( F )  = 24. Since A C I ° (m) ,  

the second row follows from proposition 2.1.6) To establish last row we check straigh- 

forward that the involutions r, crjkr = (rj 'rk)r(~ir~)-l,  ¢rijotir have not fixed points 
in F. Now we prove the third row. 

Set 

D = {diag(1,81,81,83),8 ~ = 1} ,'~ ( Z 4 )  3. 

Then D is a normal subgroup of I(rn) .  

LEMMA 6.1. Let h E rG be an antiholomorphic involution and Zn( h) is the central- 

izer of h into D. Then 
O) the group ZD (h) acts transitively on the set of  the connected components of  

Fix ( h). Hence, the components have equal Euler characteristic. 

(ii) If  x = x ( F i x ( h ) )  > 0  thenFix(h) istheunionof x /2  spheres, f i x = O  , 
then Fix (h) is the union of tod. I f  X < O, then Fix (h) is a connected set. 

Proof. First, we show that (i) implies (ii). 

Let Fix(h) = U1 O . . .  U Ct, Cj n Cj = 0, i#  j be the decomposition of Fix(h)  

into the connected components. By (i) we have X(C1) . . . .  = X(Ck) = ~X- Since 
dh-complex submanifolds Cj, j  = l , . . . ,  k are oriented, (where dh is the h invariant 

complex structure) we have X(Cj) E { 2 , 0 , - 2 , - 4 , . . . } .  Hence, if X > 0 then 
X(Gj)  = 2, Cj ~ S 2 . If X = 0, then C i ~, T 2. Let X < 0. Notethat Gj are smooth 

Jh-complex curve. Using the adjunction formula for a smooth curve on a surface with 

the trivial canonical bundle, we have % -  Cj = -X(Gj)  = - ~ X  > 0. Hence, the 

intersection form (Gj .  Oj) = diag(- '  { , . . . , - ~ )  is positively defined. On the other 

hand, the intersection form of complex algebraic cycles on a compact complex surface 

has signature ( + , - , . . .  , - )  [3]. So k = 1 and Fix(h) = C l is connected. 
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To prove (i), we define the ramified covering with the group D ,r : IE p3 ~ IE p3 

by the formula Yi = x~(0  < i < 3). It projectes the Fermat surface F C C P 3 

onto the plane ¢ p2 = {~--~ Vi = 0 }. Since D is a normal subgroup, the involution h 

defines some involution h = hD = Dh on t12 p2 .  The assertion (i) is equivalent to the 

following statement: 

(i ~) The map ,r projects any connected component of  F ix (h )  onto ,r(Fix ( h ) ) .  

The projection ,r(Fix ( h ) )  can be ramified only over points from the set ,r(Fix ( h ) )  

NA C F ix (h )  f~ A ,  where A = {VoVlV2V3 --- O} is the coordinate tetrahedron. It can 

be checked that h = r, a23 o r  or c~01 o0t23 o r  (see § 7) and F ix(h)  ~ ]RP 2. We 

consider only the case h = Pl = a01 oa23 o r .  Then , r (FiX(Pl) )  = Fix(/31) m IRP 2, 

F ix (h i )  f'lA = {P1 = (1 : ( - 1 )  : O: 0), P2 = ( 0 :  O: 1 : ( - 1 ) ) } .  

This implies i ') for h = Pl. For other case, the proof is similar. Of cause we use that 

the pre-image of  a regular point z E I t ( F i x ( h ) ) ,  h E rG, is an orbit of  ZD(h).  It is 

easy to prove. 

Now we compute x(Fix/91) .  The pre-image I r -1(Pi )  of  each ramified point 

Pi, i = 1,2 consists of  4 points which are invariant by Pl- The simple calculation 

gives 

g n ( p l )  = {diag( 1,81,62,63) , 61 = 62 • 63} ~ ( Z 4 )  2 . 

Let v, e, f be the number of  vertices, edges and faces of  a triangulation T of  It(Fix ( p l ) )  

_~ IRP 2 , which has the points P l ,  ]:'2 as vertices. Then v - e + f = x ( I R P  2) = 1. 

For the corresponding triangulation T '  = 7r - l  (T )  of  Fix ( p l )  we have 

v ' =  1 6 v - ( 1 6 - 4 ) . 2 ,  e ' =  16e, f ' =  16f ,  

x ( F i x ( p l ) )  = v' - e' + f '  = - 8  

Now the lemma 6.1 (ii) shows that Fix (h)  is a connected surface of  genus 5. For the 

other involutions p~, the calculations are similar. This proves the theorem. • 

REMARK. The theorem 6.1 remain true if the Fermat surface F is replaced by a quartic 

X from the connected component Q 9 F on the set of  B-invariant smooth quartic in 

p3 .  These quartic are defined by 

3 
4 2 2 2 2 

qo E xi + cvcl + = qi( zoZ i + O, ZjX k) q4XOZlZ23:3 
i=O 

q =  (qo : q l  :q2 : q3 : q4 )  E ] R P  4. 
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PROPOSmON 6.1. Forany B-invadant quattic X 6 Q, the space H 2 ( X  , IE) 8 of  
B-invariant elements from H2 ( X ,  ~.) is 1 -dimensional. 

Proof. Set n ,  = H i ( X , C . ) , H ~  = Hi(X,~E) 8. Since H o = Ho B ,.~ Ha = H ~  _,2 

• ~ ,  H l = H 3 = 0 ,  i t is  sufficient to prove that k := d i m H ,  e = 3. It well known that 

k = IBI-' ~ t(b) 

where t(b) is the trace of  the induced operator b. E End H . ( X ,  #2). 

We have 

t(b) = trb.lH tr b.ln0 + tr b.lH2 + tr b, lH, = 

= ~ ( - - 1 ) ' t r  b.IH, = L(b) 

where L(b)  is the Lefschetz number. By the known formula [6]. L(b)  = x (F ix  (b ) ) .  

Using the results from the table 2, now we can calculate k as follows: 

k = IBI-'  ~ t ( b )  = 2 -5 ~ ' ~ x ( F i x ( b ) )  = 
b6B ~B 

= 2-5(24+ 8 • 15 -- 8 -6) = 3. 

THEOREM 6.2. Let X be a quartic from Q and rn is the Calabi-Yau metn'c on X 
associated with the embedding X C ¢-p3. Then (i) there is (unique up to a signe) 

B-invadant parallel complex structure J on X .  

(ii) The J-complex curves Oj = F ix (p / ) ,  j = 1 , . . . , 6  are mutually homologous 
and are dual to an auto-dual parallel 2 -form "l with ,l z = 8. 

Proof. (i) follows from the relation ~ _~ Z 2 and the proposition 2.1. To prove 

(ii), we remark that the self-intersection number C • O of  a smooth complex curve C 

on K3-surface  equals up to sign to the Euler characteristic - X ( O ) .  In particular, for 

J -complex  curves Oj, we have 

Cj . C j  = × ( F i x ( p ) )  = 8. 

By proposition 6.1., the space of  B-invariant element H 2 ( X  , ¢ ) B  is 1-dimensional. 

Hence, it is dual to the 1 -dimensional. subspace of H2(X,  ~.) generated by the auto- 

dual Kahler 2 -form m o d. Since the group B ~ ( 7'  2) 5 is commutative and preserves 

J, it preserves also the fixed points set Oj = F i x ( 0 )  and the orientation on Oj. This 
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means that the homology class [Cj]  is B-invariant and, hence, it does not depend on 

j = 1 , . . .  ,6 .  This proves (ii). • 

Returning to the Fermat manifold (F ,  ra) ,  we have 

COROLLARY. Let r E I(  m) be the involution o f  F defined by the complex conjuga- 

tion. Then there is a r-invadant integerparallel 2 -form "1 E F with ,I 2 = 8. Under 

the notations o f  § 3 ,4  one may assume that 

3' = e 2 = V~-m o J l-  

Proof. By theorem 6.2, there is an integer parallel B-invariant (and, hence, r-invafiant) 

2 -form ,7 with 3, 2 = 8. By theorem 3.2, the only integer parallel 2 -form with square 8 

are 4-el,:l:e 2. The isometry group I ( m )  permutes these 2-forms (see § 4). Hence, 

we may assume that ,,/= e 2 . According to § 4 ,  the associated with e 2 parallel complex 

structure is J l ,  (J1) = e~. More precisely, we have e 2 = Vt2"m o J l -  Indeed, for any 

parallel complex structure J, we have 

( m  o j ) 2  = ( m  o .To) 2 = v o l F  = 4 ,  e~ = 8 .  

Under the identification from the corollary, we have 

PROPOSITION 6.2. 1) Let g E G = I(  m, ,To). Then gr preserves the complex struc- 

ture s t ,  t s -- 1, i f  101 = t 2. In  pam'cular, gr preserves Jl i f  Iol = 1 and gr 

preserves ,I x f f  191 = i. 

2) I ( m ,  J l )  = I ° ( r a ) X { 1 , r ) , I ( m ,  Jx) = _r° (m)) ,{1 ,%r) .  

3) Thesubgroupsof I ( m ) ,  wldchpreserve Jt uptoasigne,  are 

I ( m , + J  o) = I(m),  I(m,-L-J 1) = H ) , { 1 , r } ,  

l(m,+Jx) = HX{I,%r). 

Proof. By results of  § 4 ,  the group I ( m )  = G U r G  acts on the space E = IR% + 

IRe I + IRe 2 as the dihedral group D 4 . More precisely, in the basis e 0 = m o ,To, el = 

- V ~ - m  o J i ,¢ :  = v ~ r a  o J1 we have t in  --- d i a g ( - 1 , - 1 , 1 ) ;  01 e = diag(1,10 I) 

for t? E G where 101 is the matrix of  the multiplication by the complex number Ig[- 

Indeed, to = Q + ie 2 is J0-holomorphic 2-form and g'to = [0[to by lemma 4.1. Now 

the proof is straightforward. • 
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7. THE CLASSIFICATION OF 2-DIMENSIONAL FIXED POINTS SETS OF 

INVOLUTIONS 

Now we enumerate connected 2 -dimensional components of  all sets Fix(h) ,  h E 

I ( m )  on the Fermat manifold (F,  m) .  According to the proposition 2.1 and the remark 

at the end of § 4, we may assume that h E l ( m )  - / e  (m)  and it is an involution. 

By corollary 4.2, h preserve precisely one of the 5 distinguished complex structures dt 

(considered up to a signe). Moreover, conjugating h in I ( m ) ,  we may suppose that 

h preserve one of the complex structures Jt = .To, Jr ,  dx, X = ~2( 1 + i).  Hence, the 
set Fix(h) is a Jr-complex curve. All such involutions h (up to a conjugation) and 

its fixed points set Fix(h) are described in the following 

THEOREM 7.1. Any  involution g E I(ra) - I ° ( r a )  is conjugated into the group I (m)  

to one and only one o f  the involutions h from the table 3. • 

There are also indicated: the h-invariant complex structure Jr, the connected com- 

ponents C of the set Fix(h) ,  the Euler characteristic X(C) (equal up to the signe to 

the intersection number O-  C),  the integral d(C) = f c  "1, wher "1 E F fl IR + ( m o .It) 

isthe generator ofthe group F n l R ( m o d t )  ~ Z (thatis, "1 = e o for t = 0 ,  "1 = c2 for 

t = 1, 3' = e z - e t  for t = x) ,  thenumber a oftheinvolutions g conjugated to h, the 

number b of  2-dimensional component for all sets Fix(g) ,  g = xhx -1 , x E I ( m ) .  

We denote by C # a surface of genus p. 

Table 3. 

h 

% 

or01 

% g2 °~01 °~23 

two 1 °123 T 

or0 if2 °t0l °~23 T 

T 

~OI~IT 

O 0 O/23 7 

~o I O¢23 T 

J t  

J0 

J0 

Jl 

J l  

J1 

Jl  

J l  

J= 

s, 

Ex(h) X( O) d( O) 
C 3 - 4  4 

C 3 - 4  4 

C ° + C O 2 1 

C s - 8  8 

0 0 - 

0 0 - 

C ~ 0 4 

C O + C O 2 2 

C O 2 4 

C 2 --2 8 

a b 

4 4 

24 24 

24 48 

6 6 

6 0 

4 0 

12 12 

24 48 

16 16 

24 24 
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COROLLARY 7.1. (i) There are 76 ,To-complex, 66 Jl-complex and 40 J~-complex 

connected 2 -dimensional submanifolds which are fixed point sets o f  involutions h E 

I ( m ) .  

(ii) The complete number o f  connected 2 -dimensional submanifolds which are 

connected components o f  the sets Fix(g) ,  isequal 288 = 76+66+66+40+40 = 25 .32 . 

Each o f  these submanifolds is complex with respect to one o f  tbe 5 distinguished complex 

structures Jt (considered up to a signe). 

Outline of  the proof. The first and the second columns of the table are established by 

the straighforward calculations based on the proposition 6.2. The Euler characteristic 

x ( F i x ( h ) )  is calculated as in § 6 or, in some cases (for example, for h = io I i I r) by 

means of the analytical geometry. Then the results of the third and the fourth columns 

follow from the lemma 6.1. The calculation of the numbers a and b is straightforward. 

To calculate d, we note that for J0-holomorphic involution h the form ~/ = ¢0 = 

m o 3"0 is cohomologic to the K~_ler form of the metric induced on F from the Fubini- 

Study metric. Hence, d(C)  is equal to the degree of the algebraic curve C C C p3 

or, which is the same, to the intersection number C -  H of C and a general hyperplane 

section H. For dl"h°l°morphic involution h, the form "l = ¢2 = ,¢~'m o dl is dual 

to the dl-complex cycle Cl = Fix(#l)  (theorem 6.2) and, hence, el(C) = C .  C1 is 

equal to the number of the intersection point IC N CII. (Since C and C 1 are totally 

geodesic submanifolds in (F,  m) ,  all intersections are transversal.) 

For Jx-holomorphic involution h , - / =  ¢2 - ¢ !  and to~ = 2¢ 0 + i(¢ 1 + ¢2) isthe 

Jx-holomorphic 2-form. Hence, it integral over dx-complex cycle C vanishes. So 

we have 

= 2 C .  F ix(o l ) .  

+ c 2) = 2 f c  c2 

Since the form c 2 can be written explicitely as the real part of the Jo-holomorphic 

2 -form w, last integral can be calculated. • 

8. THE J 1 - H O L O M O R P H I C  EMBEDDING OF THE FERMAT MANIFOLD 

INTO ~ p5 AND THE ASSOCIATED CALABI-YAU METRIC 

Let X be an B-invariant quartic in {r p3 from the family Q with the Calabi-Yau 

metric m, in particular, the Fermat manifold. (see § 6). We denote by J0 (resp., J )  

the standard (resp., B-invariant) complex structure on X. Since %Jo = - J 0 ,  %J = 

J the Kglaler forms m o 3" o and m o a r are orthogonal and, hence, the structure -To and 

3" anti-commute. 
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Consider the fixed points sets C i = Fix(pi) of the involutions Pi E I ( m ) ,  i = 

1 , . . . ,  6, see § 6. By the theorem 6.1, 6.2, the sets C~ are J-complex connected 

smooth curves of genus 5. The curves C~ are mutually homologous and, hence, they 
are linear equivalent. We denote by L the line bundle defined by C i .  

LEMMA 8.1. Let  G be a smooth irreducible curve o f  genus N > 0 on a K3 -surface Y 

and L = [ C] is the associated line bundle. Then 

(i) dim H ° ( Y , O ( L ) )  = N +  1 , H I ( Y , O ( L ) )  = H 2 ( y , O ( L ) )  = 0; 

(ii) the linear system ICI has no basic points and, hence, it is defined the holomor- 

phic map 

j : y --, p ( H O ( y , O ( L ) ) . )  ~_ ¢ .pN.  

Proof. Since the canonical bundle K r. is trivial, the adjunction formula implies Lie = 

K c and H ° ( C ,  LIc) = H ° ( C ,  K c)  = CN. Since Y is simply connected, H 1 ( Y , O )  

= 0. Hence, the cohomological sequence, induced by the sequence of sheaves 

0 ~ Oy ~ O y ( L )  .--* O c ( L )  ---, 0 

can be written as 

0 --4 H ° ( Y , O )  = • --, H ° ( Y , O ( L ) )  -.. ¢ N  = 

= H ° ( C , O ( K c ) )  --*0. 

So we have H ° ( Y ,  O(L ) )  ~_ ¢N+1. By the duality of Kodaira-Serre, H2(Y ,  O ( L ) )  

= H ° (Y, O( L °))* = O, since the divisor C is effective. Using the addivity of Euler 

characteristic, we have 

X ( Y , O ( L ) )  = h ° ( Y , L )  - h I ( Y , L )  + h 2 ( Y , L )  = 

= N + 1 - h I ( Y , L )  = x ( Y , O )  + X ( C , O ( K c ) )  = 

= 2 + ( N - 1 ) = N +  I.  

Hence, H 1 ( y ,  O(L)  ) = 0. These prove (i) The surjectivity of the map H ° ( Y, O(L) )  

--, H ° ( C, O( L, Iv)) implies that the basical set of I C[ is contained into the set of points 

where all sections of the bundle LIc = K c  vanish. The last set is emply. This proves 

the lemma. 
Applying the 1emma to the J-holomorphic curves C/ of genus 5 on X E Q, we 

receive a d-holomorphic map 

] : X  --4 (r.P 5 = P ( H ° ( X , O ( L ) ) * ) ,  L = [Cil .  
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PROPOSITION 8.1. All fibers o f  the map j : X --* ¢.p5 are finite and the image j (  X )  

is contained into the intersection o f  three quaddc in f. p5.  

Proof. By theorem 6.2., the curve Ci(i  = 1 , . . . ,  6) is dual to the cohomology class 

x/2-[ m o J ] .  Hence, the line bundle L = [ C i] is positive and, by Kodaira theorem, it 
is ample. This implies that all fibers of  j is finite. To prove the second assertion, we 

compute h ° ( X ,  L ® L ). A s i n t h e p r o o f o f t h e l e m m a 8 . 1 , w e s h o w t h a t  h ° ( X ,  L ® L ) = 

× ( X ,  O( L ® L) ).  Then the Noether formula gives 

1 
h ° ( X , L ®  L) = x ( X , O )  + ~ ( ( L ®  L) . ( L ®  L) + ( L ®  L) • K )  

= 2 +  l ( 2 c  i) . ( 2 0  i) = 

= 2 + 2  - 8 =  18. 

On the other hand, h ° ( C P  s , 0 ( 2 ) )  = 21 = 18 + 3. Now the arguments from [3], ch. 

4, § 5 establishe the assertion. • 

We state without proof  more precise result. 

THEOREM 8.1. The divisors Ci = Fix(pi )  ( i  = 1 , . . . , 6 )  on the complex surface 

( X ,  J)  are very ample, that is the associated holomorphic map j : X --* ¢. p5 = 

P(  H ° ( X ,  0 ( L ) ) * )  is an embedding. The Calabi- Yau metric m'  associated with em- 

bedding j is related with the standard Calabi- Yau metric m on X (associated with 

the embedding X C ¢. p3) by: m'  = x/'2m. The image j (  X )  coincides with the 

smooth complete intersection o f  three diagonal quadtic o f  the form { ~ E • pS , a1~ 2 + 

. . . +  a6~ 2 = 0}.  The group B C I(  m) acts in j (  X )  as the projective group 

{ d i a g ( 1 , q , . . . , e s ) , Q  = + 1 }  ~_ ( Z 2 )  ~. 
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